Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(36): 24761-24769, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671503

ABSTRACT

Capacity retention is a critical property to enhance in electrochemical storage systems applied to renewable energy. In lithium-sulfur (Li-S) batteries, the capacity fade resulting from the shuttle effect of polysulfides is a major obstacle to their practical application. Sepiolite, an eco-friendly earth-abundant clay with suitable surface chemistry for anchoring and retaining various molecules and structures, was studied as a cathode additive to mitigate the shuttle effect using experimental and theoretical approaches. Electrochemical measurements, spectroscopy, and ab initio calculations were performed to describe the mechanism and interfaces involved in polysulfide retention using 2 wt% of sepiolite as an additive in Li-S batteries. The results showed that the addition of sepiolite significantly improved the capacity retention during battery cycling. Spectroscopic analysis revealed that the effective sepiolite-polysulfide interface was governed by oxidized sulfur species. Additionally, ab initio studies showed a highly exothermic adsorption both inside and outside the sepiolite pore. This study demonstrates the potential use of eco-friendly, low-cost, non-toxic, natural, and abundant materials as additives to increase capacity retention.

2.
Chemphyschem ; 24(6): e202200665, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36377795

ABSTRACT

In this work, we develop a new tool to provide a diagnostic map for alkali-ion intercalation materials under galvanostatic conditions. These representations, stated in the form of capacity level diagrams, are built from hundreds of numerical simulations representing different experimental conditions, summarized in two dimensionless parameters: a kinetic parameter denominated Ξ and a finite diffusion parameter l. To lay the theoretical and methodological foundations, a general model is used here. This model can be adapted to the thermodynamic and kinetic framework of specific systems. We provide two representative examples.

3.
Chemphyschem ; 23(2): e202100700, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34750942

ABSTRACT

Understanding and optimizing single particle rate behaviour is normally challenging in composite commercial lithium-ion electrode materials. In this regard, recent experimental research has addressed the electrochemical Li-ion intercalation in individual nanosized particles. Here, we present a thorough theoretical analysis of the Li+ intercalation voltammetric behaviour in single nano/micro-scale LiMn2 O4 (LMO) particles, incorporating realistic interactions between inserted ions. A transparent 2-dimensional zone diagram representation of kinetic-diffusional behaviour is provided that allows rapid diagnosis of the reversibility and diffusion length of the system depending on the particle geometry. We provide an Excel file where the boundary lines of the zone diagram can be rapidly recalculated by setting input values of the rate constant, k0 and diffusion coefficient, D . The model framework elucidates the heterogeneous behaviour of nanosized particles with similar sizes but different shapes. Hence, we present here an outlook for realistic multiscale modelling of real materials.


Subject(s)
Lithium , Diffusion , Electrodes , Ions
4.
Phys Chem Chem Phys ; 23(31): 16776-16784, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34319321

ABSTRACT

Motivated by the abundant experimental work in the area of Li-ion batteries, in the present work we characterize via computer simulations the structure of Si-Li amorphous alloys in a wide range of compositions. Using a reactive force field we propose a novel accelerated exploration of local minima to obtain amorphous structures close to equilibrium. The features of this system analyzed for different alloy compositions are the partial radial distribution functions g(r), the first and second nearest neighbour coordination numbers and the short-order structure. The complex structure of the second peak of the Si-Li g(r) is elucidated using a cluster-connection analysis.

5.
Phys Chem Chem Phys ; 23(5): 3281-3289, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33506828

ABSTRACT

Complex materials composed of two and three elements with high Li-ion storage capacity are investigated and tested as lithium-ion battery (LiB) negative electrodes. Namely, anodes containing tin, silicon, and graphite show very good performance because of the large gravimetric and volumetric capacity of silicon and structural support provided by tin and graphite. The performance of the composites during the first cycles was studied using ex situ magic angle spinning (MAS) 7Li Nuclear Magnetic Resonance (NMR), density functional theory (DFT) calculations, and electrochemical techniques. The best performance was obtained for Sn/Si/graphite in a 1 : 1 : 1 proportion, due to an emergent effect of the interaction between Sn and Si. The results suggest a stabilization effect of Sn over Si, providing a physical constraint that prevents Si pulverization. This mechanism ensures good cyclability over more than one hundred cycles, low capacity fading and high specific capacity.

SELECTION OF CITATIONS
SEARCH DETAIL