Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(36): 10780-10785, 2017 08 28.
Article in English | MEDLINE | ID: mdl-28707367

ABSTRACT

We report colloidal routes to synthesize silicon@carbon composites for the first time. Surface-functionalized Si nanoparticles (SiNPs) dissolved in styrene and hexadecane are used as the dispersed phase in oil-in-water emulsions, from which yolk-shell and dual-shell hollow SiNPs@C composites are produced via polymerization and subsequent carbonization. As anode materials for Li-ion batteries, the SiNPs@C composites demonstrate excellent cycling stability and rate performance, which is ascribed to the uniform distribution of SiNPs within the carbon hosts. The Li-ion anodes composed of 46 wt % of dual-shell SiNPs@C, 46 wt % of graphite, 5 wt % of acetylene black, and 3 wt % of carboxymethyl cellulose with an areal loading higher than 3 mg cm-2 achieve an overall specific capacity higher than 600 mAh g-1 , which is an improvement of more than 100 % compared to the pure graphite anode. These new colloidal routes present a promising general method to produce viable Si-C composites for Li-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...