Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
NPJ Sci Learn ; 9(1): 20, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499525

ABSTRACT

Associative learning abilities vary considerably among individuals, with attentional processes suggested to play a role in these variations. However, the relationship between attentional processes and individual differences in associative learning remains unclear, and whether these variations reflect in event-related potentials (ERPs) is unknown. This study aimed to investigate the relationship between attentional processes and associative learning by recording electrocortical activity of 38 young adults (18-32 years) during an associative learning task. Learning performance was assessed using the signal detection index d'. EEG topographic analyses and source localizations were applied to examine the neural correlates of attention and associative learning. Results revealed that better learning scores are associated with (1) topographic differences during early (126-148 ms) processing of the stimulus, coinciding with a P1 ERP component, which corresponded to a participation of the precuneus (BA 7), (2) topographic differences at 573-638 ms, overlapping with an increase of global field power at 530-600 ms, coinciding with a P3b ERP component and localized within the superior frontal gyrus (BA11) and (3) an increase of global field power at 322-507 ms, underlay by a stronger participation of the middle occipital gyrus (BA 19). These insights into the neural mechanisms underlying individual differences in associative learning suggest that better learners engage attentional processes more efficiently than weaker learners, making more resources available and displaying increased functional activity in areas involved in early attentional processes (BA7) and decision-making processes (BA11) during an associative learning task. This highlights the crucial role of attentional mechanisms in individual learning variability.

2.
Front Neurosci ; 17: 1188695, 2023.
Article in English | MEDLINE | ID: mdl-37397452

ABSTRACT

Higher cardiorespiratory fitness is associated with an increased ability to perform sustained attention tasks and detect rare and unpredictable signals over prolonged periods. The electrocortical dynamics underlying this relationship were mainly investigated after visual stimulus onset in sustained attention tasks. Prestimulus electrocortical activity supporting differences in sustained attention performance according to the level of cardiorespiratory fitness have yet to be examined. Consequently, this study aimed to investigate EEG microstates 2 seconds before the stimulus onset in 65 healthy individuals aged 18-37, differing in cardiorespiratory fitness, while performing a psychomotor vigilance task. The analyses showed that a lower duration of the microstate A and a higher occurrence of the microstate D correlated with higher cardiorespiratory fitness in the prestimulus periods. In addition, increased global field power and occurrence of microstate A were associated with slower response times in the psychomotor vigilance task, while greater global explained variance, coverage, and occurrence of microstate D were linked to faster response times. Our collective findings showed that individuals with higher cardiorespiratory fitness exhibit typical electrocortical dynamics that allow them to allocate their attentional resources more efficiently when engaged in sustained attention tasks.

3.
J Sports Sci ; 41(7): 616-630, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37409697

ABSTRACT

The stopping of a planned motor response is called motor inhibitory control (IC) and allows humans to produce appropriate goal-directed behaviour. The ever-changing environment of many sports requires athletes to rapidly adapt to unpredictable situations in which split-second suppressions of planned or current actions are needed. In this scoping review, the approach of the PRISMA-ScR was used to determine whether sports practice develops IC and, if so, which sports factors are key to building IC expertise. The PubMed, Web of Science Core Collection, ScienceDirect and APA PsycNet Advanced Search databases were searched with predefined combinations of keywords. Twenty-six articles were selected and analysed. Most of the publications (n = 21) compared athletes with non-athletes, or athletes from other sports. Only a few articles (n = 5) reported results from intra-sport comparison. Overall, the studies reported better IC performance in athletes compared to non-athletes. The correlational link from sports practice to IC improvement is observed but additional longitudinal protocols are needed to prove its direct link. Findings have implication for determining whether IC could represent a marker of performance and thus for supporting the implementation of cognitive training in sport.


Subject(s)
Sports , Humans , Athletes
4.
Sci Rep ; 12(1): 7657, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35538089

ABSTRACT

Inhibitory control (IC), the ability to suppress inappropriate actions, can be improved by regularly facing complex and dynamic situations requiring flexible behaviors, such as in the context of intensive sport practice. However, researchers have not clearly determined whether and how this improvement in IC transfers to ecological and nonecological computer-based tasks. We explored the spatiotemporal dynamics of changes in the brain activity of three groups of athletes performing sport-nonspecific and sport-specific Go/NoGo tasks with video footages of table tennis situations to address this question. We compared table tennis players (n = 20), basketball players (n = 20) and endurance athletes (n = 17) to identify how years of practicing a sport in an unpredictable versus predictable environment shape the IC brain networks and increase the transfer effects to untrained tasks. Overall, the table tennis group responded faster than the two other groups in both Go/NoGo tasks. The electrical neuroimaging analyses performed in the sport-specific Go/NoGo task revealed that this faster response time was supported by an early engagement of brain structures related to decision-making processes in a time window where inhibition processes typically occur. Our collective findings have relevant applied perspectives, as they highlight the importance of designing more ecological domain-related tasks to effectively capture the complex decision-making processes acquired in real-life situations. Finally, the limited effects from sport practice to laboratory-based tasks found in this study question the utility of cognitive training intervention, whose effects would remain specific to the practice environment.


Subject(s)
Basketball , Tennis , Athletes/psychology , Humans , Inhibition, Psychological , Reaction Time/physiology , Tennis/physiology
5.
Neuropsychologia ; 172: 108271, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35595065

ABSTRACT

Cardiorespiratory fitness is thought to be positively related to sustained attention. However, the underlying mechanisms of this relationship have yet to be fully elucidated. The objective of this study was to i) explore the relationship between cardiorespiratory fitness and sustained attention in 72 young adults (18-37 years old) and ii) provide insight on the electrocortical dynamics supporting sustained attention performance in individuals differing in cardiorespiratory fitness by means of EEG topographic analyses and source localization. Behaviorally, cardiorespiratory fitness was related to faster response times and higher accuracy in the psychomotor vigilance task even when adjusting the model with confounding variables such as age, body mass index and chronic physical activity. However, there was no relationship between cardiorespiratory fitness and the classic vigilance decrement observed in the sustained attention task. At the electrocortical level, higher cardiorespiratory fitness was related to increased global field power (310-333 ms poststimulus) localized in the posterior cingulate cortex (BA 30) followed by changes in scalp topographies around the P3b ERP component (413-501 ms poststimulus), which corresponded to earlier activation of the supplementary motor areas (BA 6). This is the first study using high-density EEG, which harnesses the whole spatiotemporal dynamics of the relationship between cardiorespiratory fitness and sustained attention in young adults.


Subject(s)
Cardiorespiratory Fitness , Adolescent , Adult , Attention/physiology , Body Mass Index , Cardiorespiratory Fitness/physiology , Exercise/physiology , Humans , Reaction Time , Young Adult
6.
Biol Psychol ; 171: 108348, 2022 05.
Article in English | MEDLINE | ID: mdl-35569573

ABSTRACT

This study aimed to investigate the impact of an extreme mountain ultramarathon (MUM) on spontaneous electrical brain activity in a group of 16 finishers. By using 4-minute high-density electroencephalographic (EEG) recordings with eyes closed before and after a 330-km race (mean duration: 125 ± 17 h; sleep duration: 7.7 ± 2.9 h), spectral power, source localization and microstate analyses were conducted. After the race, power analyses revealed a centrally localized increase in power in the delta (0.5-3.5 Hz) and theta (4.0-7.5 Hz) frequency bands and a decrease in alpha (8.0-12.0 Hz) power at the parieto-occipital sites. Higher brain activation in the alpha frequency band was observed within the left posterior cingulate cortex, left angular gyrus and visual association areas. Microstate analyses indicated a significant decrease in map C predominance and an increase in the global field power (GFP) for map D at the end of the race. These changes in power patterns and microstate parameters contrast with previously reported findings following short bouts of endurance exercises. We discuss the potential factors that explain lower alpha activity within the parieto-occipital regions and microstate changes after MUMs. In conclusion, high-density EEG resting-state analyses can be recommended to investigate brain adaptations in extreme sporting activities.


Subject(s)
Brain Mapping , Electroencephalography , Brain/physiology , Eye , Humans , Parietal Lobe
7.
Front Hum Neurosci ; 14: 600667, 2020.
Article in English | MEDLINE | ID: mdl-33343320

ABSTRACT

Motor inhibitory control (IC), the ability to suppress unwanted actions, has been previously shown to rely on domain-general IC processes that are involved in a wide range of IC tasks. Nevertheless, the existence of effector-specific regions and activation patterns that would differentiate manual vs. oculomotor response inhibition remains unknown. In this study, we investigated the brain dynamics supporting these two response effectors with the same IC task paradigm. We examined the behavioral performance and electrophysiological activity in a group of healthy young people (n = 25) with a Go/NoGo task using the index finger for the manual modality and the eyes for the oculomotor modality. By computing topographic analysis of variance, we found significant differences between topographies of scalp recorded potentials of the two response effectors between 250 and 325 ms post-stimulus onset. The source estimations localized this effect within the left precuneus, a part of the superior parietal lobule, showing stronger activity in the oculomotor modality than in the manual modality. Behaviorally, we found a significant positive correlation in response time between the two modalities. Our collective results revealed that while domain-general IC processes would be engaged across different response effectors in the same IC task, effector-specific activation patterns exist. In this case, the stronger activation of the left precuneus likely accounts for the increased demand for visual attentional processes in the oculomotor Go/NoGo task.

8.
Sci Rep ; 9(1): 18226, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796879

ABSTRACT

Anticipation is the ability to accurately predict future actions or events ahead of the act itself. When attempting to anticipate, researchers have identified that at least two broad sources of information are used: contextual information relating to the situation in question; and biological motion from postural cues. However, the neural correlates associated with the processing of these different sources of information across groups varying in expertise has yet to be examined empirically. We compared anticipation performance and electrophysiological activity in groups of expert (n = 12) and novice (n = 15) performers using a video-based task. Participants made anticipation judgements after being presented information under three conditions: contextual information only; kinematic information only; and both sources of information combined. The experts responded more accurately across all three conditions. Stronger alpha event-related desynchronization over occipital and frontocentral sites occurred in experts compared to the novices when anticipating. The experts relied on stronger preparatory attentional mechanisms when they processed contextual information. When kinematic information was available, the domain specific motor representations built up over many years of practice likely underpinned expertise. Our findings have implications for those interested in identifying and subsequently, enhancing the neural mechanisms involved in anticipation.


Subject(s)
Alpha Rhythm/physiology , Anticipation, Psychological/physiology , Evoked Potentials/physiology , Adult , Athletes , Cricket Sport/physiology , Electroencephalography , Humans , Psychomotor Performance/physiology , Young Adult
9.
Neuroimage ; 197: 457-469, 2019 08 15.
Article in English | MEDLINE | ID: mdl-30974240

ABSTRACT

How executive function training paradigms can be effectively designed to promote a transfer of the effects of interventions to untrained tasks remains unclear. Here, we tested the hypothesis that training with a complex task involving motor, perceptual and task-set control components would result in more transfer than training with a simple motor control task, because the Complex training would lead to more involvement-and in turn modification-of domain-general executive control networks. We compared performance and electrophysiological activity before and after 10 days of executive control training with the complex (n = 18) versus the simple task (n = 17). We further assessed the effect of the two training regimens on untrained executive tasks involving or not one of the trained control components. A passive control group (n = 19) was used to assess retest effects. Both training groups improved at the trained task but exhibited different plastic changes within left-lateralized and medial frontal areas at 200-250 ms post-stimulus onset. However, contrary to our hypotheses, they showed equivalent improvement to the passive group to the transfer tasks. Our collective results reveal that the effect of training with a task involving multiple executive control components is highly specific to the trained task, even when the training modifies the functional networks underlying the trained executive components. Our findings corroborate current evidence that general cognitive enhancement cannot be achieved with training, even when the interventions modify domain-general brain areas.


Subject(s)
Brain/physiology , Executive Function/physiology , Neuronal Plasticity/physiology , Transfer, Psychology/physiology , Adult , Electroencephalography , Evoked Potentials/physiology , Humans , Male , Reaction Time/physiology
10.
Front Neurosci ; 13: 1315, 2019.
Article in English | MEDLINE | ID: mdl-31920485

ABSTRACT

This clinical case report presents synchronous physiological data from an individual in whom a spontaneous vasovagal reaction occurred without syncope. The physiological data are presented for three main phases: Baseline (0-200 s), vasovagal reaction (200-600 s), and recovery period (600-1200 s). The first physiological changes occurred at around 200 s, with a decrease in blood pressure, peak in heart rate and vastus lateralis tissue oxygenation, and a drop in alpha power. The vasovagal reaction was associated with a progressive decrease in blood pressure, heart rate and cerebral oxygenation, whilst the mean middle cerebral artery blood flow velocity and blood oxygen saturation remained unchanged. Heart rate variability parameters indicated significant parasympathetic activation with a decrease in sympathetic tone and increased baroreflex sensitivity. The total blood volume and tissue oxygenation index (TOI) dropped in the brain but slightly increased in the vastus lateralis, suggesting cerebral hypoperfusion with blood volume pooling in the lower body part. Cerebral hypoperfusion during the vasovagal reaction was associated with electroencephalography (EEG) flattening (i.e., decreased power in beta and theta activity) followed by an EEG high-amplitude "slow" phase (i.e., increased power in theta activity). The subject developed signs and symptoms of pre-syncope with EEG flattening and slowing during prolonged periods of symptomatic hypotension, but did not lose consciousness.

11.
Behav Brain Res ; 361: 65-73, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30576719

ABSTRACT

Mirror movements (MM) refer to involuntary contractions occurring in homologous muscles contralateral to the voluntary movements. In right-handers, greater MM occur in the right hand during movements of the non-dominant left hand than conversely. However, it remains to know if such behavioural asymmetry of MM relies only on motor processes or if it is also related to attentional and executive processes. This study explores MM behavioural asymmetry and its cerebral correlates with electroencephalography in 14 right-handed healthy adults. We investigated the quantity and the intensity of MM and the associated task-related power changes in the beta band over central regions (motor processes), in the alpha band over the parietal regions (attentional processes) and in the theta band over frontal regions (executive processes). Behavioural results revealed greater MM in the right hand when the left hand was active than the reverse. This behavioural asymmetry was associated with asymmetry in the cortical activations over motor areas. Greater MM in the right hand correlated with activation over the contralateral left motor region, revealing that selective inhibition of one hand induced activation of the motor cortex leading to MM. In addition, increased cortical activations over parietal and fronto-mesial regions suggest that an increase of attentional and executive processes is required to inhibit one hand, independently of its side. All in all, this study highlights that side-specific motor and non-side-specific attentional and executive processes are associated to the MM asymmetry.


Subject(s)
Functional Laterality/physiology , Motor Cortex/physiology , Muscle Contraction/physiology , Attention , Electroencephalography , Female , Hand/physiology , Humans , Inhibition, Psychological , Male , Movement/physiology , Psychomotor Performance/physiology , Young Adult
12.
Front Neurosci ; 12: 460, 2018.
Article in English | MEDLINE | ID: mdl-30042654

ABSTRACT

Recent findings suggest that an acute physical exercise modulates the temporal features of the EEG resting microstates, especially the microstate map C duration and relative time coverage. Microstate map C has been associated with the salience resting state network, which is mainly structured around the insula and cingulate, two brain nodes that mediate cardiovascular arousal and interoceptive awareness. Heart rate variability (HRV) is dependent on the autonomic balance; specifically, an increase in the sympathetic (or decrease in the parasympathetic) tone will decrease variability while a decrease in the sympathetic (or increase in the parasympathetic) tone will increase variability. Relying on the functional interaction between the autonomic cardiovascular activity and the salience network, this study aims to investigate the effect of exercise on the resting microstate and the possible interplay with this autonomic cardiovascular recovery after a single bout of endurance exercise. Thirty-eight young adults performed a 25-min constant-load cycling exercise at an intensity that was subjectively perceived as "hard." The microstate temporal features and conventional time and frequency domain HRV parameters were obtained at rest for 5 min before exercise and at 5, 15, 30, 45, and 60 min after exercise. Compared to the baseline, all HRV parameters were changed 5 min after exercise cessation. The mean durations of microstate B and C, and the frequency of occurrence of microstate D were also changed immediately after exercise. A long-lasting effect was found for almost all HRV parameters and for the duration of microstate C during the hour following exercise, indicating an uncompleted recovery of the autonomic cardiovascular system and the resting microstate. The implication of an exercise-induced afferent neural traffic is discussed as a potential modulator of both the autonomic regulation of heart rate and the resting EEG microstate.

13.
J Exerc Sci Fit ; 16(2): 43-48, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30662492

ABSTRACT

BACKGROUND: The purpose of this study was to compare the accuracy of a smartphone application and a mechanical pedometer for step counting at different walking speeds and mobile phone locations in a laboratory context. METHODS: Seventeen adults wore an iPphone6© with Runtastic Pedometer© application (RUN), at 3 different locations (belt, arm, jacket) and a pedometer (YAM) at the waist. They were asked to walk on an instrumented treadmill (reference) at various speeds (2, 4 and 6 km/h). RESULTS: RUN was more accurate than YAM at 2 km/h (p < 0.05) and at 4 km/h (p = 0.03). At 6 km/h the two devices were equally accurate. The precision of YAM increased with speed (p < 0.05), while for RUN, the results were not significant but showed a trend (p = 0.051). Surprisingly, YAM underestimates the number of step by 60.5% at 2 km/h. The best accurate step counting (0.7% mean error) was observed when RUN is attached to the arm and at the highest speed. CONCLUSIONS: RUN pedometer application could be recommended mainly for walking sessions even for low walking speed. Moreover, our results confirm that the smartphone should be strapped close to the body to discriminate steps from noise by the accelerometers (particularly at low speed).

14.
Brain Topogr ; 30(4): 461-472, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28528447

ABSTRACT

Electrical neuroimaging is a promising method to explore the spontaneous brain function after physical exercise. The present study aims to investigate the effect of acute physical exercise on the temporal dynamic of the resting brain activity captured by the four conventional map topographies (microstates) described in the literature, and to associate these brain changes with the post-exercise neuromuscular function. Twenty endurance-trained subjects performed a 30-min biking task at 60% of their maximal aerobic power followed by a 10 km all-out time trial. Before and after each exercise, knee-extensor neuromuscular function and resting EEG were collected. Both exercises resulted in a similar increase in microstate class C stability and duration, as well as an increase in transition probability of moving toward microstate class C. After the first exercise, the increase in class C global explained variance was correlated with the indice of muscle alterations (100 Hz paired stimuli). After the second exercise, the increase in class C mean duration was correlated with the 100 Hz paired stimuli, but also with the reduction in maximal voluntary force. Interestingly, microstate class C has been associated with the salience resting-state network, which participates in integrating multisensory modalities. We speculate that temporal reorganization of the brain state after exercise could be partially modulated by the muscle afferents that project into the salience resting-state network, and indirectly participates in modulating the motor behavior.


Subject(s)
Brain/physiology , Exercise/physiology , Rest/physiology , Adult , Bicycling , Brain Mapping , Electroencephalography , Humans , Male , Muscle Contraction/physiology , Oxygen Consumption , Physical Endurance , Physical Exertion , Probability , Quadriceps Muscle/physiology , Time Factors
15.
PLoS One ; 11(10): e0164176, 2016.
Article in English | MEDLINE | ID: mdl-27732627

ABSTRACT

INTRODUCTION: Low educational level (EL) and low physical fitness are both predictors of increased morbidity and mortality in patients with type 2 diabetes. It is unknown if EL is related to physical fitness. This would have important implication for the treatment approach of patients of low EL. MATERIALS AND METHODS: In 2011/12, we invited participants of a new nationwide Swiss physical activity program for patients with type 2 diabetes to participate in this study. EL was defined by self-report and categorized as low (mandatory education), middle (professional education) or high (high school/university). Physical fitness was determined using 5 validated measures that assessed aerobic fitness, functional lower limb muscle strength, walking speed, balance and flexibility. Potential confounder variables such as other socio-cultural factors, physical activity level, body composition, diabetes-related parameters and complications/co-morbidities as well as well-being were assessed. RESULTS: All invited 185 participants (mean age 59.6 ±9.8 yrs, 76 women) agreed to be included. Of all patients, 23.1% had a low, 32.7% a middle and 44.2% a high EL; 41.8% were professionally active. The study population had a mean BMI of 32.4±5.2 kg/m2 and an HbA1c of 7.3±1.3%. The mean diabetes duration was 8.8±7.4 years. In the baseline assessment, higher EL was associated with increased aerobic fitness, increased functional lower limb muscle strength, and increased walking speed using linear regression analysis (values for low, middle and high EL, respectively: 91.8 ± 27.9, 116.4 ± 49.7 and 134.9 ± 60.4 watts for aerobic fitness (p = 0.002), 15 ± 4.7, 13.9 ± 2.7, 12.6 ± 2.9 seconds for strength (p = 0.001) and 8.8 ± 1.6, 8.3 ± 1.4, 7.8 ± 1.4 seconds for walking speed (p = 0.004)). These associations were independent of potential confounders. Overall, aerobic fitness was 46%, functional limb muscle strength 16%, and walking speed 11% higher in patients of high compared to those of low EL. EL was not related to balance or flexibility. DISCUSSION: A main strength of the present study is that it addresses a population of importance and a factor (EL) whose understanding can influence future interventions. A second strength is its relatively large sample size of a high-risk population. Third, unlike studies that have shown an association between self-reported fitness and educational level we assessed physical fitness measures by a quantitative and validated test battery using assessors blinded to other data. Another novelty is the extensive evaluation of the role of many relevant confounder variables. CONCLUSIONS: In conclusion, we show that in patients with type 2 diabetes EL correlates favorably and independently with important health-related physical fitness measures such as aerobic fitness, walking speed, and lower limb strength. Our findings underline that diabetic patients with low EL should be specifically encouraged to participate in physical activity intervention programs to further reduce social disparities in healthcare. Such programs should be structured and integrate the norms, needs and capacities (financial, time, physical capacities and self-efficacy) of this population, and their effectiveness should be tested in future studies. TRIAL REGISTRATION: University of Lausanne clinicaltrials.gov NCT01289587.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Educational Status , Physical Fitness/physiology , Aged , Body Mass Index , Cross-Sectional Studies , Female , Humans , Linear Models , Male , Middle Aged , Muscle Strength , Postural Balance , Self Report , Walking
16.
Exp Brain Res ; 234(12): 3543-3553, 2016 12.
Article in English | MEDLINE | ID: mdl-27531152

ABSTRACT

Post-movement beta synchronization (PMBS) modulations have been related to sensory reafferences after movement initiation and inhibitory processes after movement interruption. Although these processes have been separately studied in young and old adults, little is known about the age-related changes in PMBS during selective inhibitory control (i.e. stop a part of an action). The present study examines the age-related modulations of PMBS associated with sensory reafferences and inhibitory processes in selective inhibitory control. Young (n = 17) and old (n = 13) participants performed a switching task first engaging bimanual finger tapping then requiring to stop the left while maintaining the right unimanual tapping (i.e. selective inhibition) at an imperative stimulus. Age groups were compared on behavioral (mean, variability and percentage of errors of inter-tap interval during and after the switching) and electrophysiological (time-frequency and source estimations in the 14-30 Hz beta frequency range) data time-locked on the imperative stimulus. Behaviorally, old adults showed larger variability and percentage of errors during the switching but performed as well as young adults after the switching. Electrophysiologically, PMBS significantly increased after the switching in the old compared to the young group within bilateral frontal and parietal areas. Our results show that the effort to maintain selective inhibition involves increased brain activation in old compared to young adults. The larger PMBS within frontal and parietal regions in old adults may reflect an age-related brain compensation enabling to efficiently maintain post-switching inhibition.


Subject(s)
Aging , Beta Rhythm/physiology , Brain Mapping , Choice Behavior/physiology , Inhibition, Psychological , Movement , Acoustic Stimulation , Adult , Aged , Aging/psychology , Electroencephalography , Female , Functional Laterality , Humans , Male , Middle Aged , Photic Stimulation , Statistics, Nonparametric , Time Factors , Young Adult
17.
Front Hum Neurosci ; 10: 257, 2016.
Article in English | MEDLINE | ID: mdl-27313522

ABSTRACT

Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

18.
Behav Brain Res ; 271: 365-73, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24971691

ABSTRACT

It is known that post-movement beta synchronization (PMBS) is involved both in active inhibition and in sensory reafferences processes. The aim of this study was examine the temporal and spatial dynamics of the PMBS involved during multi-limb coordination task. We investigated post-switching beta synchronization (assigned PMBS) using time-frequency and source estimations analyzes. Participants (n=17) initiated an auditory-paced bimanual tapping. After a 1,500 ms preparatory period, an imperative stimulus required to either selectively stop the left while maintaining the right unimanual tapping (Switch condition: SWIT) or to continue the bimanual tapping (Continue condition: CONT). PMBS significantly increased in SWIT compared to CONT with maximal difference within right central region in broad-band 14-30 Hz and within left central region in restricted-band 22-26 Hz. Source estimations localized these effects within right pre-frontal cortex and left parietal cortex, respectively. A negative correlation showed that participants with a low percentage of errors in SWIT had a large PMBS amplitude within right parietal and frontal cortices. This study shows for the first time simultaneous PMBS with distinct functions in different brain regions and frequency ranges. The left parietal PMBS restricted to 22-26 Hz could reflect the sensory reafferences of the right hand tapping disrupted by the switching. In contrast, the right pre-frontal PMBS in a broad-band 14-30 Hz is likely reflecting the active inhibition of the left hand stopped. Finally, correlations between behavioral performance and the magnitude of the PMBS suggest that beta oscillations can be viewed as a marker of successful active inhibition.


Subject(s)
Beta Rhythm/physiology , Cortical Synchronization/physiology , Electroencephalography , Functional Laterality/physiology , Movement/physiology , Adult , Brain Mapping/methods , Female , Frontal Lobe/physiology , Hand/physiology , Humans , Inhibition, Psychological , Male , Parietal Lobe/physiology , Time Factors
19.
Exp Brain Res ; 232(2): 469-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24232976

ABSTRACT

Deficits in the processing of sensory reafferences have been suggested as accounting for age-related decline in motor coordination. Whether sensory reafferences are accurately processed can be assessed based on the bimanual advantage in tapping: because of tapping with an additional hand increases kinesthetic reafferences, bimanual tapping is characterized by a reduced inter-tap interval variability than unimanual tapping. A suppression of the bimanual advantage would thus indicate a deficit in sensory reafference. We tested whether elderly indeed show a reduced bimanual advantage by measuring unimanual (UM) and bimanual (BM) self-paced tapping performance in groups of young (n = 29) and old (n = 27) healthy adults. Electroencephalogram was recorded to assess the underlying patterns of oscillatory activity, a neurophysiological mechanism advanced to support the integration of sensory reafferences. Behaviorally, there was a significant interaction between the factors tapping condition and age group at the level of the inter-tap interval variability, driven by a lower variability in BM than UM tapping in the young, but not in the elderly group. This result indicates that in self-paced tapping, the bimanual advantage is absent in elderly. Electrophysiological results revealed an interaction between tapping condition and age group on low beta band (14-20 Hz) activity. Beta activity varied depending on the tapping condition in the elderly but not in the young group. Source estimations localized this effect within left superior parietal and left occipital areas. We interpret our results in terms of engagement of different mechanisms in the elderly depending on the tapping mode: a 'kinesthetic' mechanism for UM and a 'visual imagery' mechanism for BM tapping movement.


Subject(s)
Aging/physiology , Brain Waves/physiology , Brain/physiology , Functional Laterality/physiology , Psychomotor Performance/physiology , Acoustic Stimulation , Adult , Aged , Aged, 80 and over , Analysis of Variance , Brain Mapping , Electroencephalography , Female , Fourier Analysis , Humans , Kinesthesis , Male , Middle Aged , Time Factors , Young Adult
20.
Neuroimage ; 87: 183-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24220039

ABSTRACT

The rapid stopping of specific parts of movements is frequently required in daily life. Yet, whether selective inhibitory control of movements is mediated by a specific neural pathway or by the combination between a global stopping of all ongoing motor activity followed by the re-initiation of task-relevant movements remains unclear. To address this question, we applied time-wise statistical analyses of the topography, global field power and electrical sources of the event-related potentials to the global vs selective inhibition stimuli presented during a Go/NoGo task. Participants (n=18) had to respond as fast as possible with their two hands to Go stimuli and to withhold the response from the two hands (global inhibition condition, GNG) or from only one hand (selective inhibition condition, SNG) when specific NoGo stimuli were presented. Behaviorally, we replicated previous evidence for slower response times in the SNG than in the Go condition. Electrophysiologically, there were two distinct phases of event-related potentials modulations between the GNG and the SNG conditions. At 110-150 ms post-stimulus onset, there was a difference in the strength of the electric field without concomitant topographic modulation, indicating the differential engagement of statistically indistinguishable configurations of neural generators for selective and global inhibitory control. At 150-200 ms, there was topographic modulation, indicating the engagement of distinct brain networks. Source estimations localized these effects within bilateral temporo-parieto-occipital and within parieto-central networks, respectively. Our results suggest that while both types of motor inhibitory control depend on global stopping mechanisms, selective and global inhibition still differ quantitatively at early attention-related processing phases.


Subject(s)
Attention/physiology , Brain/physiology , Inhibition, Psychological , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Electroencephalography , Evoked Potentials/physiology , Female , Humans , Male , Signal Processing, Computer-Assisted , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...