Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1343589, 2024.
Article in English | MEDLINE | ID: mdl-38379947

ABSTRACT

Olive breeding is a long process and any improvement in shortening the juvenile phase is highly desirable. In the present study, the effect of olive tree parents in different agronomic characteristics have been evaluated during four years in 520 olive genotypes generated from three different crosses in three different experimental fields, all located in Andalusia region, Spain. The crosses evaluated are 'Arbosana' x 'Sikitita' and its reciprocal, whose parents are characterized by being early bearers; and 'Frantoio' free pollinated, whose mother variety is characterized by having a long unproductive period. We studied plant height, distance and time to the first flowering, plant vigor and percentage of olive oil in the fruits. The findings reveal that progeny from 'Arbosana' and 'Sikitita' crosses, irrespective of the direction of the cross, exhibited a lower distance to flower, early bearing, reduced vigor and a lower percentage of olive oil in fruit compared to 'Frantoio' seedlings obtained from free pollination. Furthermore, no discernible differences were observed in the evaluated characteristics when comparing reciprocal crosses across the three fields in the four-years assessment period. Therefore, these results highlight the significance of planting height in reducing the evaluation period required in an olive breeding program and support the hypothesis that there is no maternal effect in the inheritance of the evaluated agronomic characteristics in olive trees.

2.
Front Plant Sci ; 14: 1149570, 2023.
Article in English | MEDLINE | ID: mdl-36909426

ABSTRACT

Olive trees are the most cultivated evergreen trees in the Mediterranean Basin, where they have deep historical and socioeconomic roots. The fungus Verticillium dahliae develops inside the vascular bundles of the host, and there are no effective applicable treatments, making it difficult to control the disease. In this sense, the use of integrated disease management, specifically the use of resistant cultivars, is the most effective means to alleviate the serious damage that these diseases are causing and reduce the expansion of this pathogen. In 2008, the University of Cordoba started a project under the UCO Olive Breeding Program whose main objective has been to develop new olive cultivars with high resistance to Verticillium wilt. Since 2008, more than 18,000 genotypes from 154 progenies have been evaluated. Only 19.9% have shown some resistance to the disease in controlled conditions and only 28 have been preselected due to their resistance in field condition and remarkable agronomic characteristics. The results of this study represent an important advancement in the generation of resistant olive genotypes that will become commercial cultivars currently demanded by the olive growing sector. Our breeding program has proven successful, allowing the selection of several new genotypes with high resistance to the disease and agronomical performance. It also highlights the need for long-term field evaluations for the evaluation of resistance and characterization of olive genotypes.

3.
J Environ Manage ; 293: 112785, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34102498

ABSTRACT

Applying pruning residues in the lanes of olive groves has become a popular practice because it is economical and accrues benefits for soil and water management. This study presents an analysis of the impact of different rates of pruning residue on soil properties, in particular related with soil quality. Over 4 annual campaigns, chopped pruning residues used as a mulch were analyzed in terms of composition, coverage and moisture content to evaluate their effects on the amount of soil organic carbon (-10 cm and -20 cm) and CO2 emissions, temperature and moisture. The experiment was carried out in a super-intensive olive orchard in Cordoba (SE, Spain) and used four amounts of fresh pruning residue: 7.5 t ha⁻1(T1), 15.0 t ha⁻1 (T2) and 30.0 t ha⁻1 (T3), with a control T0 = 0.0 t ha1. Mulch mean leaf fraction was 46.0 ± 17.5% (±SD) and initial water content, 24.8 ± 8.6%. The mulching benefits for soil moisture were observed in amounts of pruning residue >7.5 t ha⁻1, which are only produced in super-intensive olive groves or in orchards with high tree densities. The low impact of the treatments on soil moisture was explained by the dramatic annual variations in residue moisture contents, caused by the regimes of high temperatures and rainfall-evapotranspiration deficits inherent to the Mediterranean Basin climate. Thus, the mulching capacity only resulted efficient when the residues were still humid in spring. In addition, 15.0 t ha⁻1 of pruning residues was the threshold to provide significant increases in soil organic carbon at depths of 0-20 cm. Thus, accumulating pruning residue in lanes at rates of over 15 t ha⁻1 (T2 and T3) is more convenient than a uniform distribution with lower amounts, due to the low mineralization rates occurring during warm seasons and the larger inputs of OM increasing the annual balance of SOC.


Subject(s)
Agriculture , Olea , Soil , Agriculture/methods , Carbon , Spain
4.
Front Plant Sci ; 7: 1226, 2016.
Article in English | MEDLINE | ID: mdl-27602035

ABSTRACT

Super high-density (SHD) olive orchards are rapidly expanding since the first plantation was set up in Spain in the 1990s. Because there are no long-term studies characterizing these systems, it is unknown if densities above a certain threshold could trigger competition among fully-grown trees, compromising their development. Over 14 years we have evaluated the performance of the major olive cultivars currently planted in SHD systems ("Arbequina," Arbequina IRTA-i·18, "Arbosana," "Fs-17," and "Koroneiki") and nine SHD designs ranging from 780 to 2254 trees ha(-1) for the cultivar "Arbequina." Remarkably, the accumulated fruit and oil production of the five cultivars increased linearly over time. Our data indicated the favorable long-term performance of the evaluated cultivars with an average annual oil production of 2.3 t ha(-1). Only "Fs-17" did not perform well to the SHD system in our conditions and it yielded about half (1.2 t ha(-1)) of the other cultivars. In the density trial for "Arbequina," both fruit and oil accumulated production increased over time as a function of tree density. Thus, the accumulated oil yield ranged from 16.1 t ha(-1) for the lowest density (780 trees ha(-1)) to 29.9 t ha(-1) for the highest (2254 trees ha(-1)). In addition, we note that the accumulated production per surface unit showed a better correlation with the hedgerow length than the tree density. Thus, the current planting designs of SHD olive orchards can be further improved taking this parameter into account. Despite observations that some irregular patterns of crop distribution have arisen, our olive hedgerows are still fully productive after 14 years of planting. This result contradicts previous experiences that showed declines in production 7 or 8 years after planting due to high vigor, shading, and limited ventilation.

5.
New Phytol ; 206(1): 436-447, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25420413

ABSTRACT

Olive (Olea europaea ssp. europaea) is the most important oil fruit crop in temperate areas, but the origin of the cultivated olive remains unclear. The existence of one or several domestication events in the Mediterranean Basin (MB) is still debated. We analyzed a dataset of 387 cultivated and wild accessions that were genotyped at 25 simple-sequence repeat (SSR) loci. The sample represented genetic diversity at the geographic extremes of the MB. We inferred relationships among samples and also applied approximate Bayesian computation to estimate the most probable demographic model of our samples. Cultivated olives clustered into three different gene pools (Q1, Q2 and Q3), corresponding loosely to the west, central and eastern MB, respectively. Q1 consisted primarily of accessions from southern Spain, retained the fingerprint of a genetic bottleneck, and was closely related to accessions from the eastern MB. Q2 showed signs of recent admixture with wild olives and may derive from a local domestication event in the central MB. Overall our results suggest that admixture shaped olive germplasm and perhaps also local domestication events.


Subject(s)
Genetic Variation , Microsatellite Repeats/genetics , Olea/genetics , Bayes Theorem , Demography , Gene Pool , Genotype , Mediterranean Region , Spain
6.
Ann Bot ; 108(5): 797-807, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21852276

ABSTRACT

BACKGROUND AND AIMS: Genetic characterization and phylogenetic analysis of the oldest trees could be a powerful tool both for germplasm collection and for understanding the earliest origins of clonally propagated fruit crops. The olive tree (Olea europaea L.) is a suitable model to study the origin of cultivars due to its long lifespan, resulting in the existence of both centennial and millennial trees across the Mediterranean Basin. METHODS: The genetic identity and diversity as well as the phylogenetic relationships among the oldest wild and cultivated olives of southern Spain were evaluated by analysing simple sequence repeat markers. Samples from both the canopy and the roots of each tree were analysed to distinguish which trees were self-rooted and which were grafted. The ancient olives were also put into chronological order to infer the antiquity of traditional olive cultivars. KEY RESULTS: Only 9·6 % out of 104 a priori cultivated ancient genotypes matched current olive cultivars. The percentage of unidentified genotypes was higher among the oldest olives, which could be because they belong to ancient unknown cultivars or because of possible intra-cultivar variability. Comparing the observed patterns of genetic variation made it possible to distinguish which trees were grafted onto putative wild olives. CONCLUSIONS: This study of ancient olives has been fruitful both for germplasm collection and for enlarging our knowledge about olive domestication. The findings suggest that grafting pre-existing wild olives with olive cultivars was linked to the beginnings of olive growing. Additionally, the low number of genotypes identified in current cultivars points out that the ancient olives from southern Spain constitute a priceless reservoir of genetic diversity.


Subject(s)
Genetic Variation , Olea/genetics , Genes, Plant , Microsatellite Repeats , Phylogeny , Plant Leaves/genetics , Plant Roots/genetics , Spain
7.
J Plant Physiol ; 165(6): 623-30, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-17723253

ABSTRACT

The effect of potassium starvation on stomatal conductance was studied in olive trees and sunflower plants, two major crops with greatly differing botanical characteristics. In both species, K(+) starvation inhibited water-stress-induced stomatal closure. In olive trees, potassium starvation favoured stomatal conductance and transpiration, as well as inhibiting shoot growth, in the three cultivars studied: 'Lechín de Granada', 'Arbequina' and 'Chetoui'. However, 'Lechín de Granada' - generally considered more drought-tolerant than 'Arbequina' and 'Chetoui' - proved less susceptible to potassium starvation. Results for olive trees also suggest genetic variability in olive cultivars in relation to potassium requirements for stem growth and the regulation of water transpiration. The results obtained suggest that inhibition of the stomatal closure mechanism produced by moderate potassium starvation is a widespread plant physiological disorder, and may be the cause of tissue dehydration in many water-stressed crops.


Subject(s)
Olea/physiology , Plant Stomata/physiology , Potassium/metabolism , Water/metabolism , Culture Media , Dehydration , Helianthus/growth & development , Olea/growth & development , Solutions
8.
Ann Bot ; 100(3): 449-58, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17613587

ABSTRACT

BACKGROUND AND AIMS: This study examines the pattern of genetic variability and genetic relationships of wild olive (Olea europaea subsp. europaea var. sylvestris) populations in the north-western Mediterranean. Recent bottleneck events are also assessed and an investigation is made of the underlying population structure of the wild olive populations. METHODS: The genetic variation within and between 11 wild olive populations (171 individuals) was analysed with eight microsatellite markers. Conventional and Bayesian-based analyses were applied to infer genetic structure and define the number of gene pools in wild olive populations. KEY RESULTS: Bayesian model-based clustering identified four gene pools, which was in overall concordance with the Factorial Correspondence Analysis and Fitch-Margoliash tree. Two gene pools were predominantly found in southern Spain and Italian islands, respectively, in samples gathered from undisturbed forests of the typical Mediterranean climate. The other two gene pools were mostly detected in the north-eastern regions of Spain and in continental Italy and belong to the transition region between the temperate and Mediterranean climate zones. CONCLUSIONS: On the basis of these results, it can be assumed that the population structure of wild olives from the north-western Mediterranean partially reflects the evolutionary history of these populations, although hybridization between true oleasters and cultivated varieties in areas of close contact between the two forms must be assumed as well. The study indicates a degree of admixture in all the populations, and suggests some caution regarding genetic differentiation at the population level, making it difficult to identify clear-cut genetic boundaries between candidate areas containing either genuinely wild or feral germplasm.


Subject(s)
Genetic Variation , Olea/genetics , Demography , Genotype , Mediterranean Region , Microsatellite Repeats , Phylogeny
9.
J Plant Physiol ; 160(12): 1467-72, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14717439

ABSTRACT

Under certain conditions, olive trees grown on calcareous soils suffer from iron chlorosis. In the present study several olive varieties and scion-rootstock combinations were evaluated for their tolerance to iron chlorosis. Plants were grown over several months in pots with a calcareous soil, under two fertilization treatments. These consisted of periodic applications of nutrient solutions containing either, 30 micromol/L FeEDDHA or not Fe. Tolerance was assessed by the chlorosis and growth parameters of plants grown without Fe, compared to those plants grown with Fe. Results show that there are differences in tolerance among olive varieties and that tolerance is mainly determined by the genotype of the rootstock. These results open the way to use tolerant varieties for those conditions where iron chlorosis could become a problem.


Subject(s)
Adaptation, Physiological/drug effects , Iron Chelating Agents/pharmacology , Iron/pharmacology , Olea/drug effects , Plant Roots/drug effects , Soil/analysis , Adaptation, Physiological/genetics , Ethylenediamines/pharmacology , Genotype , Iron Deficiencies , Olea/genetics , Olea/growth & development , Plant Roots/genetics , Plant Roots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...