Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Molecules ; 29(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38398572

ABSTRACT

Professor Carlos Gutiérrez-Merino, a prominent scientist working in the complex realm of biological membranes, has made significant theoretical and experimental contributions to the field. Contemporaneous with the development of the fluid-mosaic model of Singer and Nicolson, the Förster resonance energy transfer (FRET) approach has become an invaluable tool for studying molecular interactions in membranes, providing structural insights on a scale of 1-10 nm and remaining important alongside evolving perspectives on membrane structures. In the last few decades, Gutiérrez-Merino's work has covered multiple facets in the field of FRET, with his contributions producing significant advances in quantitative membrane biology. His more recent experimental work expanded the ground concepts of FRET to high-resolution cell imaging. Commencing in the late 1980s, a series of collaborations between Gutiérrez-Merino and the authors involved research visits and joint investigations focused on the nicotinic acetylcholine receptor and its relation to membrane lipids, fostering a lasting friendship.


Subject(s)
Membrane Lipids , Receptors, Nicotinic , Cell Membrane/metabolism , Membrane Lipids/chemistry , Fluorescence Resonance Energy Transfer , Membranes/metabolism , Receptors, Nicotinic/metabolism
2.
Biochem Biophys Res Commun ; 685: 149165, 2023 12 10.
Article in English | MEDLINE | ID: mdl-37922786

ABSTRACT

Using CHO-K1/A5 cells, a clonal cell line that robustly expresses adult muscle-type nicotinic acetylcholine receptor (nAChR), we explored whether insulin resistance in these mammalian cells affects cell-surface expression of the nAChR, its endocytic internalization, and actin cytoskeleton integrity. Acute nanomolar insulin stimulation resulted in a slow increase in nAChR cell-surface levels, reaching maximum levels at ∼1 h. Long periods of insulin incubation caused CHO-K1/A5 cells to become insulin resistant, as previously observed with several other cell types. Furthermore, long-term insulin treatment abolished the effects of short-term insulin exposure on cell-surface nAChR levels, suggestive of a desensitization phenomenon. It also affected the kinetics of ligand-induced nAChR internalization. Since the integrity of the cortical actin cytoskeleton affects nAChR endocytosis, we also studied the effects of long-term insulin treatment on this meshwork. We found that it significantly affected the cortical actin morphology of CHO-K1/A5 cells and the response of the actin cytoskeleton to a subsequent short-term insulin stimulus. Overall, the present results show for the first time the effects of insulin signaling on cell-surface nAChR expression and actin cytoskeleton-associated internalization.


Subject(s)
Hyperinsulinism , Insulin Resistance , Receptors, Nicotinic , Cricetinae , Animals , Receptors, Nicotinic/metabolism , CHO Cells , Cricetulus , Insulin/pharmacology , Insulin/metabolism , Actin Cytoskeleton/metabolism
3.
Tog (A Coruña) ; 20(2): 170-177, Nov 30, 2023. tab
Article in Spanish | IBECS | ID: ibc-228911

ABSTRACT

Objetivos: medir el impacto de la participación en actividades espirituales en el proceso de recuperación de patología dual. Métodos: estudio observacional descriptivo con metodología mixta realizado con una muestra de 20 usuarios hombre, tratados en régimen interno en la Comunidad Terapéutica (CT): Ayuda a la Recuperación de Politoxicómanos de Málaga (ARPOM), en Málaga, España. La espiritualidad se ha medido según el Cuestionario de Espiritualidad de Parsian y Dunning validado al español; y el proceso de recuperación, a través de grupo focal. Resultados: la puntuación media de la espiritualidad ha sido de 2,9 en un rango de 0-4, donde 4 se corresponde a “totalmente de acuerdo” en base a afirmaciones realizadas sobre la espiritualidad. Los grupos focales mostraron que los usuarios en su mayoría asocian la espiritualidad a la religión, y no a la ética y moral; y que su deseo en el proceso de recuperación es implementar la realización de actividades espirituales en su tratamiento. Conclusiones: la realización de actividades espirituales influencia positivamente el proceso de recuperación de los usuarios con patología dual.(AU)


Objective: To assess the influence of participation in spiritual activities on the recovery process of individuals with dual pathology. Methods: A descriptive observational study with a sample of 20 users treated internally in the Therapeutic Community: Ayuda a la Recuperación de Politoxicómanos de Málaga, in Málaga, Spain. Spirituality was assessed using the Parsian and Dunning Spirituality Questionnaire, which has been validated in Spanish, and the recovery process was examined through focus groups. Results: The mean spirituality score was 2.9 on a scale of 0-4, where 4 corresponds to "totally agree," based on statements about spirituality. The focus groups showed that users mostly associate spirituality with religion, not with ethics and morality, and that users in the recovery process desire to implement spiritual activities in their treatment. Conclusions: Performing spiritual activities positively impacts the recovery process of users with dual pathology.(AU)


Subject(s)
Humans , Male , Female , Diagnosis, Dual (Psychiatry) , Spiritualism , Spiritual Therapies , Mental Health Recovery , Occupational Therapy , Mental Health , Spain , Religion and Psychology , Ethics , Morale
4.
Pharmaceutics ; 15(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37631266

ABSTRACT

Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.

5.
Cells ; 12(16)2023 08 11.
Article in English | MEDLINE | ID: mdl-37626860

ABSTRACT

The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.


Subject(s)
Alzheimer Disease , Arthrogryposis , Receptors, Nicotinic , Humans , Cell Membrane , Brain , Receptors, Nicotinic/genetics
6.
Protein Expr Purif ; 210: 106312, 2023 10.
Article in English | MEDLINE | ID: mdl-37236517

ABSTRACT

The ε4 allele of the apolipoprotein E gene (APOE4) constitutes the main genetic risk factor for late-onset Alzheimer disease (AD). High amounts of pure apolipoprotein E4 (ApoE4), in a rapid and reproducible fashion, could be of value for studying its pathophysiological roles in AD. The aim of the present work was to optimize a preparative method to obtain highly purified recombinant ApoE4 (rApoE4) with full biological activity. rApoE4 was expressed in the E. Coli BL21(D3) strain and a soluble form of the protein was purified by a combination of affinity and size-exclusion chromatography that precluded a denaturation step. The structural integrity and the biochemical activity of the purified rApoE4 were confirmed by circular dichroism and a lipid-binding assay. Several biological parameters affected by rApoE4, such as mitochondrial morphology, mitochondrial membrane potential and reactive oxygen species production were studied in CNh cells, a neuronal cell line, and neurodifferentiation and dendritogenesis were analyzed in the SH-SY5Y neuroblastoma cell line. The improved rApoE4 purification technique reported here enables the production of highly purified protein that retain the structural properties and functional activity of the native protein, as confirmed by tests in two different neuronal cell lines in culture.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Line , Alzheimer Disease/genetics
7.
Pharmacol Res ; 190: 106729, 2023 04.
Article in English | MEDLINE | ID: mdl-36931540

ABSTRACT

The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.


Subject(s)
Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Cell Membrane/metabolism , Phospholipids/metabolism , Cholesterol/metabolism , Synaptic Transmission
8.
Colloids Surf B Biointerfaces ; 222: 113090, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563415

ABSTRACT

The presence of linear amino acid motifs with the capacity to recognize the neutral lipid cholesterol, known as Cholesterol Recognition/interaction Amino acid Consensus sequence (CRAC), and its inverse or mirror image, CARC, has recently been reported in the primary sequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike S homotrimeric glycoprotein. These motifs also occur in the two other pathogenic coronaviruses, SARS-CoV, and Middle-East respiratory syndrome CoV (MERS-CoV), most conspicuously in the transmembrane domain, the fusion peptide, the amino-terminal domain, and the receptor binding domain of SARS-CoV-2 S protein. Here we analyze the presence of cholesterol-recognition motifs in these key regions of the spike glycoprotein in the pathogenic CoVs. We disclose the inherent pathophysiological implications of the cholesterol motifs in the virus-host cell interactions and variant infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Glycoproteins
9.
Front Cell Dev Biol ; 11: 1328875, 2023.
Article in English | MEDLINE | ID: mdl-38274273

ABSTRACT

Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.

10.
Front Mol Biosci ; 9: 1014659, 2022.
Article in English | MEDLINE | ID: mdl-36518846

ABSTRACT

Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.

11.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36142349

ABSTRACT

The cell-surface topography and density of nicotinic acetylcholine receptors (nAChRs) play a key functional role in the synapse. Here we employ in parallel two labeling and two super-resolution microscopy strategies to characterize the distribution of this receptor at the plasma membrane of the mammalian clonal cell line CHO-K1/A5. Cells were interrogated with two targeted techniques (confocal microscopy and stimulated emission depletion (STED) nanoscopy) and single-molecule nanoscopy (stochastic optical reconstruction microscopy, STORM) using the same fluorophore, Alexa Fluor 647, tagged onto either α-bungarotoxin (BTX) or the monoclonal antibody mAb35. Analysis of the topography of nanometer-sized aggregates ("nanoclusters") was carried out using STORMGraph, a quantitative clustering analysis for single-molecule localization microscopy based on graph theory and community detection, and ASTRICS, an inter-cluster similarity algorithm based on computational geometry. Antibody-induced crosslinking of receptors resulted in nanoclusters with a larger number of receptor molecules and higher densities than those observed in BTX-labeled samples. STORM and STED provided complementary information, STED rendering a direct map of the mesoscale nAChR distribution at distances ~10-times larger than the nanocluster centroid distances measured in STORM samples. By applying photon threshold filtering analysis, we show that it is also possible to detect the mesoscale organization in STORM images.


Subject(s)
Receptors, Nicotinic , Animals , Antibodies, Monoclonal/metabolism , Bungarotoxins , Cell Membrane/metabolism , Mammals/metabolism , Microscopy, Fluorescence/methods , Receptors, Nicotinic/metabolism
12.
Membranes (Basel) ; 12(8)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36005727

ABSTRACT

Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.

13.
Biochim Biophys Acta Biomembr ; 1864(11): 184033, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35964712

ABSTRACT

Adequate homeostasis of lipid, protein and carbohydrate metabolism is essential for cells to perform highly specific tasks in our organism, and the brain, with its uniquely high energetic requirements, posesses singular characteristics. Some of these are related to its extraordinary dotation of synapses, the specialized subcelluar structures where signal transmission between neurons occurs in the central nervous system. The post-synaptic compartment of excitatory synapses, the dendritic spine, harbors key molecules involved in neurotransmission tightly packed within a minute volume of a few femtoliters. The spine is further compartmentalized into nanodomains that facilitate the execution of temporo-spatially separate functions in the synapse. Lipids play important roles in this structural and functional compartmentalization and in mechanisms that impact on synaptic transmission. This review analyzes the structural and dynamic processes involving lipids at the synapse, highlighting the importance of their homeostatic balance for the physiology of this complex and highly specialized structure, and underscoring the pathologies associated with disbalances of lipid metabolism, particularly in the perinatal and late adulthood periods of life. Although small variations of the lipid profile in the brain take place throughout the adult lifespan, the pathophysiological consequences are clinically manifested mostly during late adulthood. Disturbances in lipid homeostasis in the perinatal period leads to alterations during nervous system development, while in late adulthood they favor the occurrence of neurodegenerative diseases.


Subject(s)
Lipidomics , Synapses , Lipids , Neurons/physiology , Synapses/metabolism , Synaptic Transmission/physiology
14.
J Membr Biol ; 255(4-5): 563-574, 2022 10.
Article in English | MEDLINE | ID: mdl-35534578

ABSTRACT

Erwin London dedicated considerable effort to understanding lipid interactions with membrane-resident proteins and how these interactions shaped the formation and maintenance of lipid phases and domains. In this endeavor, he developed ad hoc techniques that greatly contributed to advancements in the field. We have employed and/or modified/extended some of his methodological approaches and applied them to investigate lipid interaction with the nicotinic acetylcholine receptor (nAChR) protein, the paradigm member of the superfamily of rapid pentameric ligand-gated ion channels (pLGIC). Our experimental systems ranged from purified receptor protein reconstituted into synthetic lipid membranes having known effects on receptor function, to cellular systems subjected to modification of their lipid content, e.g., varying cholesterol levels. We have often employed fluorescence techniques, including fluorescence quenching of diphenylhexatriene (DPH) extrinsic fluorescence and of nAChR intrinsic fluorescence by nitroxide spin-labeled phospholipids, DPH anisotropy, excimer formation of pyrene-phosphatidylcholine, and Förster resonance energy transfer (FRET) from the protein moiety to the extrinsic probes Laurdan, DPH, or pyrene-phospholipid to characterize various biophysical properties of lipid-receptor interactions. Some of these strategies are revisited in this review. Special attention is devoted to the anionic phospholipid phosphatidic acid (PA), which stabilizes the functional resting form of the nAChR. The receptor protein was shown to organize its PA-containing immediate microenvironment into microdomains with high lateral packing density and rigidity. PA and cholesterol appear to compete for the same binding sites on the nAChR protein.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Nicotinic , Animals , Receptors, Nicotinic/chemistry , Torpedo/metabolism , Diphenylhexatriene , London , Phosphatidylcholines/metabolism , Cholesterol/chemistry , Phosphatidic Acids/metabolism , Pyrenes
15.
Prog Lipid Res ; 87: 101166, 2022 07.
Article in English | MEDLINE | ID: mdl-35513161

ABSTRACT

The role of cholesterol in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronavirus-host cell interactions is currently being discussed in the context of two main scenarios: i) the presence of the neutral lipid in cholesterol-rich lipid domains involved in different steps of the viral infection and ii) the alteration of metabolic pathways by the virus over the course of infection. Cholesterol-enriched lipid domains have been reported to occur in the lipid envelope membrane of the virus, in the host-cell plasma membrane, as well as in endosomal and other intracellular membrane cellular compartments. These membrane subdomains, whose chemical and physical properties distinguish them from the bulk lipid bilayer, have been purported to participate in diverse phenomena, from virus-host cell fusion to intracellular trafficking and exit of the virions from the infected cell. SARS-CoV-2 recruits many key proteins that participate under physiological conditions in cholesterol and lipid metabolism in general. This review analyses the status of cholesterol and lipidome proteins in SARS-CoV-2 infection and the new horizons they open for therapeutic intervention.


Subject(s)
COVID-19 , Cholesterol/metabolism , Humans , SARS-CoV-2
16.
Life Sci ; 297: 120464, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35271880

ABSTRACT

SARS-CoV-2, the etiological agent of the current COVID-19 pandemic, belongs to a broad family of coronaviruses that also affect humans. SARS-CoV-2 infection usually leads to bilateral atypical pneumonia with significant impairment of respiratory function. However, the infectious capacity of SARS-CoV-2 is not limited to the respiratory system, but may also affect other vital organs such as the brain. The central nervous system is vulnerable to cell damage via direct invasion or indirect virus-related effects leading to a neuroinflammatory response, processes possibly associated with a decrease in the activity of angiotensin II converting enzyme (ACE2), the canonical cell-surface receptor for SARS-CoV-2. This enzyme regulates neuroprotective and neuroimmunomodulatory functions and can neutralize both inflammation and oxidative stress generated at the cellular level. Furthermore, there is evidence of an association between vitamin D deficiency and predisposition to the development of severe forms of COVID-19, with its possible neurological and neuropsychiatric sequelae: vitamin D has the ability to down-modulate the effects of neuroinflammatory cytokines, among other anti-inflammatory/immunomodulatory effects, thus attenuating harmful consequences of COVID-19. This review critically analyzes current evidence supporting the notion that vitamin D may act as a neuroprotective and neuroreparative agent against the neurological sequelae of COVID-19.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Pandemics , SARS-CoV-2 , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamins
17.
Adv Protein Chem Struct Biol ; 128: 435-474, 2022.
Article in English | MEDLINE | ID: mdl-35034726

ABSTRACT

Dendritic spines are small protrusions stemming from the dendritic shaft that constitute the primary specialization for receiving and processing excitatory neurotransmission in brain synapses. The disruption of dendritic spine function in several neurological and neuropsychiatric diseases leads to severe information-processing deficits with impairments in neuronal connectivity and plasticity. Spine dysregulation is usually accompanied by morphological alterations to spine shape, size and/or number that may occur at early pathophysiological stages and not necessarily be reflected in clinical manifestations. Autism spectrum disorder (ASD) is one such group of diseases involving changes in neuronal connectivity and abnormal morphology of dendritic spines on postsynaptic neurons. These alterations at the subcellular level correlate with molecular changes in the spine proteome, with alterations in the copy number, topography, or in severe cases in the phenotype of the molecular components, predominantly of those proteins involved in spine recognition and adhesion, reflected in abnormally short lifetimes of the synapse and compensatory increases in synaptic connections. Since cholinergic neurotransmission participates in the regulation of cognitive function (attention, memory, learning processes, cognitive flexibility, social interactions) brain acetylcholine receptors are likely to play an important role in the dysfunctional synapses in ASD, either directly or indirectly via the modulatory functions exerted on other neurotransmitter receptor proteins and spine-resident proteins.


Subject(s)
Autism Spectrum Disorder , Dendritic Spines , Humans , Neuronal Plasticity , Neurons , Proteome , Synapses
18.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34695840

ABSTRACT

We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.


Subject(s)
Deep Learning , Receptors, Nicotinic , Cell Membrane/metabolism , Diffusion , Membrane Proteins , Receptors, Nicotinic/metabolism
19.
Curr Top Membr ; 88: 257-314, 2021.
Article in English | MEDLINE | ID: mdl-34862029

ABSTRACT

Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough ß face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.


Subject(s)
Membrane Lipids , Membrane Microdomains , Cell Membrane , Cholesterol , Fluorescence , Lipid Bilayers
20.
Front Mol Neurosci ; 14: 744597, 2021.
Article in English | MEDLINE | ID: mdl-34803605

ABSTRACT

Autism spectrum disorder (ASD) is a set of complex neurodevelopmental diseases that include impaired social interaction, delayed and disordered language, repetitive or stereotypic behavior, restricted range of interests, and altered sensory processing. The underlying causes of the core symptoms remain unclear, as are the factors that trigger their onset. Given the complexity and heterogeneity of the clinical phenotypes, a constellation of genetic, epigenetic, environmental, and immunological factors may be involved. The lack of appropriate biomarkers for the evaluation of neurodevelopmental disorders makes it difficult to assess the contribution of early alterations in neurochemical processes and neuroanatomical and neurodevelopmental factors to ASD. Abnormalities in the cholinergic system in various regions of the brain and cerebellum are observed in ASD, and recently altered cholesterol metabolism has been implicated at the initial stages of the disease. Given the multiple effects of the neutral lipid cholesterol on the paradigm rapid ligand-gated ion channel, the nicotinic acetylcholine receptor, we explore in this review the possibility that the dysregulation of nicotinic receptor-cholesterol crosstalk plays a role in some of the neurological alterations observed in ASD.

SELECTION OF CITATIONS
SEARCH DETAIL
...