Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992411

ABSTRACT

Collagen-based hydrogels are commonly used in mechanobiology to mimic the extracellular matrix. A quantitative analysis of the influence of collagen concentration and properties on the structure and mechanics of the hydrogels is essential for tailored design adjustments for specific in vitro conditions. We combined focused ion beam scanning electron microscopy and rheology to provide a detailed quantitative atlas of the mechanical and nanoscale three-dimensional structural alterations that occur when manipulating different hydrogel's physicochemistry. Moreover, we study the effects of such alterations on the phenotype of breast cancer cells and their mechanical interactions with the extracellular matrix. Regardless of the microenvironment's pore size, porosity or mechanical properties, cancer cells are able to reach a stable mesenchymal-like morphology. Additionally, employing 3D traction force microscopy, a positive correlation between cellular tractions and ECM mechanics is observed up to a critical threshold, beyond which tractions plateau. This suggests that cancer cells in a stable mesenchymal state calibrate their mechanical interactions with the ECM to keep their migration and invasiveness capacities unaltered. STATEMENT OF SIGNIFICANCE: The paper presents a thorough study on the mechanical microenvironment in breast cancer cells during their interaction with collagen based hydrogels of different compositions. The hydrogels' microstructure were obtained using state-of-the-art 3D microscopy, namely focused ion beam-scanning electron microscope (FIB-SEM). FIB-SEM was originally applied in this work to reconstruct complex fibered collagen microstructures within the nanometer range, to obtain key microarchitectural parameters. The mechanical microenvironment of cells was recovered using Traction Force Microscopy (TFM). The obtained results suggest that cells calibrate tractions such that they depend on mechanical, microstructural and physicochemical characteristics of the hydrogels, hence revealing a steric hindrance. We hypothesize that cancer cells studied in this paper tune their mechanical state to keep their migration and invasiveness capacities unaltered.

2.
Proc Natl Acad Sci U S A ; 120(15): e2216934120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37011188

ABSTRACT

Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell-matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell-matrix interactions and to improve the design of materials for mechanobiology studies.


Subject(s)
Extracellular Matrix , Hydrogels , Extracellular Matrix/physiology , Cell Communication
3.
Nat Commun ; 12(1): 3192, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045434

ABSTRACT

Tissues achieve their complex spatial organization through an interplay between gene regulatory networks, cell-cell communication, and physical interactions mediated by mechanical forces. Current strategies to generate in-vitro tissues have largely failed to implement such active, dynamically coordinated mechanical manipulations, relying instead on extracellular matrices which respond to, rather than impose mechanical forces. Here, we develop devices that enable the actuation of organoids. We show that active mechanical forces increase growth and lead to enhanced patterning in an organoid model of the neural tube derived from single human pluripotent stem cells (hPSC). Using a combination of single-cell transcriptomics and immunohistochemistry, we demonstrate that organoid mechanoregulation due to actuation operates in a temporally restricted competence window, and that organoid response to stretch is mediated extracellularly by matrix stiffness and intracellularly by cytoskeleton contractility and planar cell polarity. Exerting active mechanical forces on organoids using the approaches developed here is widely applicable and should enable the generation of more reproducible, programmable organoid shape, identity and patterns, opening avenues for the use of these tools in regenerative medicine and disease modelling applications.


Subject(s)
Neural Tube/cytology , Organoids/physiology , Tissue Engineering/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation/physiology , Cell Line , Extracellular Matrix/physiology , Humans , Hydrogels/chemistry , Mechanotransduction, Cellular/physiology , Pluripotent Stem Cells , Polyethylene Glycols/chemistry , RNA-Seq , Regenerative Medicine/methods , Single-Cell Analysis , Tissue Engineering/instrumentation
4.
Cytoskeleton (Hoboken) ; 77(7): 261-276, 2020 07.
Article in English | MEDLINE | ID: mdl-32588525

ABSTRACT

During sprouting angiogenesis-the growth of blood vessels from the existing vasculature-endothelial cells (ECs) adopt an elongated invasive form and exert forces at cell-cell and cell-matrix interaction sites. These cell shape changes and cellular tractions require extensive reorganizations of the actomyosin network. However, the respective roles of actin and myosin for endothelial sprouting are not fully elucidated. In this study, we further investigate these roles by treating 2D-migrating and 3D-sprouting ECs with chemical compounds targeting either myosin or actin. These treatments affected the endothelial cytoskeleton drastically and reduced the invasive response in a compound-specific manner; pointing toward a tight control of the actin and myosin activity during sprouting. Clusters in the data further illustrate that endothelial sprout morphology is sensitive to the in vitro model mechanical microenvironment and directs future research toward mechanical substrate guidance as a strategy for promoting engineered tissue vascularization. In summary, our results add to a growing corpus of research highlighting a key role of the cytoskeleton for sprouting angiogenesis.


Subject(s)
Actomyosin/metabolism , Collagen/metabolism , Endothelium/metabolism , Humans
5.
Angiogenesis ; 23(3): 315-324, 2020 08.
Article in English | MEDLINE | ID: mdl-31997048

ABSTRACT

Angiogenesis is the formation of new blood vessels from the pre-existing vasculature. It is essential for normal tissue growth and regeneration, and also plays a key role in many diseases [Carmeliet in Nat Med 9:653-660, 2003]. Cytoskeletal components have been shown to be important for angiogenic sprout initiation and maintenance [Kniazeva and Putnam in Am J Physiol 297:C179-C187, 2009] as well as endothelial cell shape control during invasion [Elliott et al. in Nat Cell Biol 17:137-147, 2015]. The exact nature of cytoskeleton-mediated forces for sprout initiation and progression, however, remains poorly understood. Questions on the importance of tip cell pulling versus stalk cell pushing are to a large extent unanswered, which among others has to do with the difficulty of quantifying and resolving those forces in time and space. We developed methods based on time-lapse confocal microscopy and image processing-further termed 4D displacement microscopy-to acquire detailed, spatially and temporally resolved extracellular matrix (ECM) deformations, indicative of cell-ECM mechanical interactions around invading sprouts. We demonstrate that matrix deformations dependent on actin-mediated force generation are spatio-temporally correlated with sprout morphological dynamics. Furthermore, sprout tips were found to exert radially pulling forces on the extracellular matrix, which were quantified by means of a computational model of collagen ECM mechanics. Protrusions from extending sprouts mostly increase their pulling forces, while retracting protrusions mainly reduce their pulling forces. Displacement microscopy analysis further unveiled a characteristic dipole-like deformation pattern along the sprout direction that was consistent among seemingly very different sprout shapes-with oppositely oriented displacements at sprout tip versus sprout base and a transition zone of negligible displacements in between. These results demonstrate that sprout-ECM interactions are dominated by pulling forces and underline the key role of tip cell pulling for sprouting angiogenesis.


Subject(s)
Computer Simulation , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Models, Cardiovascular , Neovascularization, Physiologic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...