Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 134: 105188, 2020 01.
Article in English | MEDLINE | ID: mdl-31787325

ABSTRACT

INTRODUCTION: Despite the London Underground (LU) handling on average 2.8 million passenger journeys per day, the characteristics and potential health effects of the elevated concentrations of metal-rich PM2.5 found in this subway system are not well understood. METHODS: Spatial monitoring campaigns were carried out to characterise the health-relevant chemical and physical properties of PM2.5 across the LU network, including diurnal and day-to-day variability and spatial distribution (above ground, depth below ground and subway line). Population-weighted station PM2.5 rankings were produced to understand the relative importance of concentrations at different stations and on different lines. RESULTS: The PM2.5 mass in the LU (mean 88 µg m-3, median 28 µg m-3) was greater than at ambient background locations (mean 19 µg m-3, median 14 µg m-3) and roadside environments in central London (mean 22 µg m-3, median 14 µg m-3). Concentrations varied between lines and locations, with the deepest and shallowest submerged lines being the District (median 4 µg m-3) and Victoria (median 361 µg m-3 but up to 885 µg m-3). Broadly in agreement with other subway systems around the world, sampled LU PM2.5 comprised 47% iron oxide, 7% elemental carbon, 11% organic carbon, and 14% metallic and mineral oxides. Although a relationship between line depth and air quality inside the tube trains was evident, there were clear influences relating to the distance from cleaner outside air and the exchange with cabin air when the doors open. The passenger population-weighted exposure analysis demonstrated a method to identify stations that should be prioritised for remediation to improve air quality. CONCLUSION: PM2.5 concentrations in the LU are many times higher than in other London transport Environments. Failure to include this environment in epidemiological studies of the relationship between PM2.5 and health in London is therefore likely to lead to a large exposure misclassification error. Given the significant contribution of underground PM2.5 to daily exposure, and the differences in composition compared to urban PM2.5, there is a clear need for well-designed studies to better understand the health effects of underground exposure.


Subject(s)
Air Pollution , Air Pollutants , Environmental Monitoring , London , Particle Size , Particulate Matter
2.
Environ Sci Process Impacts ; 16(6): 1328-37, 2014 May.
Article in English | MEDLINE | ID: mdl-24668077

ABSTRACT

While vehicle emissions present the most widespread cause of breaches of EU air quality standards in urban areas of the UK, the greatest PM10 concentrations are often recorded close to small industrial sites with significant and long-term public exposure within close proximity. This is particularly the case in London, where monitoring in densely populated locations, adjacent to waste transfer stations (WTS), routinely report the highest PM10 concentrations in the city. This study aims to assess the impact of dust abatement measures taken at a WTS in west London and, in so doing, develop analysis techniques transferrable to other similar industrial situations. The study was performed in a 'blinded fashion', i.e., no details of operating times, activities or remediation measures were provided prior to the analysis. The study established that PM10 concentrations were strongly related to the industrial area's working hours and atmospheric humidity. The primary source of local particulate matter during working hours was found to be from the industrial area itself, not from the adjacent road serving the site. CUSUM analysis revealed a strong, sustained change point coinciding with a number of modifications at the WTS. Analysis suggested that introducing a vehicle washer bay, leading to a less dry and dusty yard, and ceasing stock piling and waste handling activities outside of the open shed had the greatest effect on PM10 concentrations. The techniques developed in this study should empower licensing authorities to more effectively characterise and mitigate particulate matter generated by urban industrial activities, thereby improving the health and quality of life of the local population.


Subject(s)
Air Pollutants/analysis , Air Pollution/prevention & control , Environmental Monitoring , Particulate Matter/analysis , Waste Disposal Facilities , Air Pollution/statistics & numerical data , Environmental Exposure/prevention & control , Environmental Exposure/statistics & numerical data , Environmental Restoration and Remediation , Humans , London
SELECTION OF CITATIONS
SEARCH DETAIL
...