Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 14(6): e1007432, 2018 06.
Article in English | MEDLINE | ID: mdl-29912942

ABSTRACT

Axonal growth and guidance rely on correct growth cone responses to guidance cues. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the crosstalk mechanisms between guidance and membrane dynamics and turnover. Recent studies indicate that whereas axonal attraction requires exocytosis, chemorepulsion relies on endocytosis. Indeed, our own studies have shown that Netrin-1/Deleted in Colorectal Cancer (DCC) signaling triggers exocytosis through the SNARE Syntaxin-1 (STX1). However, limited in vivo evidence is available about the role of SNARE proteins in axonal guidance. To address this issue, here we systematically deleted SNARE genes in three species. We show that loss-of-function of STX1 results in pre- and post-commissural axonal guidance defects in the midline of fly, chick, and mouse embryos. Inactivation of VAMP2, Ti-VAMP, and SNAP25 led to additional abnormalities in axonal guidance. We also confirmed that STX1 loss-of-function results in reduced sensitivity of commissural axons to Slit-2 and Netrin-1. Finally, genetic interaction studies in Drosophila show that STX1 interacts with both the Netrin-1/DCC and Robo/Slit pathways. Our data provide evidence of an evolutionarily conserved role of STX1 and SNARE proteins in midline axonal guidance in vivo, by regulating both pre- and post-commissural guidance mechanisms.


Subject(s)
Neurogenesis/genetics , Syntaxin 1/genetics , Syntaxin 1/physiology , Animals , Axons/metabolism , Chemotaxis/genetics , Chick Embryo , Drosophila/genetics , Drosophila Proteins/genetics , Exocytosis/genetics , Gene Expression Regulation, Developmental/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Mice , Mice, Knockout , Nerve Growth Factors/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nervous System/embryology , Netrin-1/genetics , Netrin-1/metabolism , Neurogenesis/physiology , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/physiology , SNARE Proteins/genetics , SNARE Proteins/metabolism , Signal Transduction/genetics , Spinal Cord/embryology , Spinal Cord/metabolism
2.
Dev Neurobiol ; 77(8): 963-974, 2017 09.
Article in English | MEDLINE | ID: mdl-28033683

ABSTRACT

Axonal growth and guidance rely on correct growth cone responses to guidance cues, both in the central nervous system (CNS) and in the periphery. Unlike the signaling cascades that link axonal growth to cytoskeletal dynamics, little is known about the cross-talk mechanisms between guidance and membrane dynamics and turnover in the axon. Our studies have shown that Netrin-1/deleted in colorectal cancer signaling triggers exocytosis through the SNARE Syntaxin-1 (STX-1) during the formation of commissural pathways. However, limited in vivo evidence is available about the role of SNARE proteins in motor axonal guidance. Here we show that loss-of-function of SNARE complex members results in motor axon guidance defects in fly and chick embryos. Knock-down of Syntaxin-1, VAMP-2, and SNAP-25 leads to abnormalities in the motor axon routes out of the CNS. Our data point to an evolutionarily conserved role of the SNARE complex proteins in motor axon guidance, thereby pinpointing an important function of SNARE proteins in axonal navigation in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 963-974, 2017.


Subject(s)
Avian Proteins/metabolism , Axons/metabolism , Drosophila Proteins/metabolism , Motor Neurons/metabolism , Neuronal Outgrowth/physiology , SNARE Proteins/metabolism , Animals , Chick Embryo , Drosophila melanogaster , Immunohistochemistry , Species Specificity
3.
PLoS One ; 10(3): e0119707, 2015.
Article in English | MEDLINE | ID: mdl-25803850

ABSTRACT

Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.


Subject(s)
Botulinum Toxins/pharmacology , Cell Proliferation/drug effects , Glioblastoma/physiopathology , RNA, Small Interfering/pharmacology , Syntaxin 1/antagonists & inhibitors , Animals , Blotting, Western , Bromodeoxyuridine , Cell Line, Tumor , Flow Cytometry , Glioblastoma/drug therapy , Humans , Lentivirus , Mice , Neoplasm Invasiveness/prevention & control , RNA, Small Interfering/genetics , Statistics, Nonparametric , Transduction, Genetic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...