Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 4(1): 101572, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36633946

ABSTRACT

In Drosophila, a male that has previously been sexually rejected reduces its courtship behavior when confronted again with an unreceptive female. This reduced courting time reflects a memory formation process. Here, we describe a simplified protocol to perform the courtship conditioning assay for assessing the reduced courting time, using regular lab equipment and handmade tools. Every step of the procedure, from raising flies and training to testing and quantification of this memory-related behavior, can be implemented in any practice laboratory.


Subject(s)
Courtship , Drosophila , Animals , Male , Female , Drosophila melanogaster , Learning , Memory
2.
Commun Biol ; 5(1): 644, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773327

ABSTRACT

Virtually every single living organism on Earth shows a circadian (i.e. "approximately a day") internal rhythm that is coordinated with planet rotation (i.e. 24 hours). External cues synchronize the central clock of the organism. Consequences of biological rhythm disruptions have been extensively studied on cancer. Still, mechanisms underlying these alterations, and how they favor tumor development remain largely unknown. Here, we show that glioblastoma-induced neurodegeneration also causes circadian alterations in Drosophila. Preventing neurodegeneration in all neurons by genetic means reestablishes normal biological rhythms. Interestingly, in early stages of tumor development, the central pacemaker lengthens its period, whereas in later stages this is severely disrupted. The re-adjustment of the external light:dark period to longer glioblastoma-induced internal rhythms delays glioblastoma progression and ameliorates associated deleterious effects, even after the tumor onset.


Subject(s)
Drosophila Proteins , Glioblastoma , Animals , Circadian Rhythm/genetics , Cues , Drosophila/genetics , Drosophila Proteins/genetics , Glioblastoma/genetics
3.
Oxf Open Neurosci ; 1: kvac008, 2022.
Article in English | MEDLINE | ID: mdl-38596710

ABSTRACT

Memory is the brain faculty to store and remember information. It is a sequential process in which four different phases can be distinguished: encoding or learning, consolidation, storage and reactivation. Since the discovery of the first Drosophila gene essential for memory formation in 1976, our knowledge of its mechanisms has progressed greatly. The current view considers the existence of engrams, ensembles of neuronal populations whose activity is temporally coordinated and represents the minimal correlate of experience in brain circuits. In order to form and maintain the engram, protein synthesis and, probably, specific transcriptional program(s) is required. The immediate early gene response during learning process has been extensively studied. However, a detailed description of the transcriptional response for later memory phases was technically challenging. Recent advances in transcriptomics have allowed us to tackle this biological problem. This review summarizes recent findings in this field, and discusses whether or not it is possible to identify a transcriptional trace for memory.

4.
Front Endocrinol (Lausanne) ; 11: 602285, 2020.
Article in English | MEDLINE | ID: mdl-33643219

ABSTRACT

Puberty and metamorphosis are two major developmental transitions linked to the reproductive maturation. In mammals and vertebrates, the central brain acts as a gatekeeper, timing the developmental transition through the activation of a neuroendocrine circuitry. In addition to reproduction, these neuroendocrine axes and the sustaining genetic network play additional roles in metabolism, sleep and behavior. Although neurohormonal axes regulating juvenile-adult transition have been classically considered the result of convergent evolution (i.e., analogous) between mammals and insects, recent findings challenge this idea, suggesting that at least some neuroendocrine circuits might be present in the common bilaterian ancestor Urbilateria. The initial signaling pathways that trigger the transition in different species appear to be of a single evolutionary origin and, consequently, many of the resulting functions are conserved with a few other molecular players being co-opted during evolution.


Subject(s)
Biological Evolution , Metamorphosis, Biological , Neurosecretory Systems/physiology , Reproduction , Sexual Maturation , Animals , Mammals , Vertebrates
SELECTION OF CITATIONS
SEARCH DETAIL
...