Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 11: 590544, 2020.
Article in English | MEDLINE | ID: mdl-33390966

ABSTRACT

Leishmaniasis are group of neglected diseases with worldwide distribution that affect about 12 million people. The current treatment is limited and may cause severe adverse effects, and thus, the search for new drugs more effective and less toxic is relevant. We have previously investigated the immunomodulatory effects of LASSBio-1386, an N-acylhydrazone derivative. Here we investigated the in vitro and in vivo activity of LASSBio-1386 against L. amazonensis. LASSBio-1386 inhibited the proliferation of promastigotes of L. amazonensis (EC50 = 2.4 ± 0.48 µM), while presenting low cytotoxicity to macrophages (CC50 = 74.1 ± 2.9 µM). In vitro incubation with LASSBio-1386 reduced the percentage of Leishmania-infected macrophages and the number of intracellular parasites (EC50 = 9.42 ± 0.64 µM). Also, in vivo treatment of BALB/c mice infected with L. amazonensis resulted in a decrease of lesion size, parasitic load and caused histopathological alterations, when compared to vehicle-treated control. Moreover, LASSBio-1386 caused ultrastructural changes, arrested cell cycle in G0/G1 phase and did not alter the membrane mitochondrial potential of L. amazonensis. Aiming to its possible molecular interactions, we performed docking and molecular dynamics studies on Leishmania phosphodiesterase B1 (PDB code: 2R8Q) and LASSBio-1386. The computational analyses suggest that LASSBio-1386 acts against Leishmania through the modulation of leishmanial PDE activity. In conclusion, our results indicate that LASSBio-1386 is a promising candidate for the development of new leishmaniasis treatment.

2.
PLoS One ; 13(7): e0199009, 2018.
Article in English | MEDLINE | ID: mdl-30059558

ABSTRACT

Pain and inflammation are complex clinical conditions that are present in a wide variety of disorders. Most drugs used to treat pain and inflammation have potential side effects, which makes it necessary to search for new sources of bioactive molecules. In this paper, we describe the ability of LASSBio-1586, an N-acylhydrazone derivative, to attenuate nociceptive behavior and the inflammatory response in mice. Antinociceptive activity was evaluated through acetic acid-induced writhing and formalin-induced nociception tests. In these experimental models, LASSBio-1586 significantly (p<0.05) reduced nociceptive behavior. Several methods of acute and chronic inflammation induced by different chemical (carrageenan, histamine, croton oil, arachidonic acid) and physical (cotton pellet) agents were used to evaluate the anti-inflammatory effect of LASSBio-1586. LASSBio-1586 exhibited potent anti-inflammatory activity in all tests (p<0.05). Study of the mechanism of action demonstrated the possible involvement of the nitrergic, serotonergic and histamine signaling pathways. In addition, a molecular docking study was performed, indicating that LASSBio-1586 is able to block the COX-2 enzyme, reducing arachidonic acid metabolism and consequently decreasing the production of prostaglandins, which are important inflammatory mediators. In summary, LASSBio-1586 exhibited relevant antinociceptive and anti-inflammatory potential and acted on several targets, making it a candidate for a new multi-target oral anti-inflammatory drug.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Edema/drug therapy , Hydrazones/pharmacology , Nociception/drug effects , Nociceptive Pain/drug therapy , Acetic Acid , Analgesics/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Arachidonic Acid/administration & dosage , Carrageenan/administration & dosage , Croton Oil/administration & dosage , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Dexamethasone/pharmacology , Disease Models, Animal , Edema/chemically induced , Edema/metabolism , Edema/pathology , Formaldehyde , Hindlimb , Histamine/administration & dosage , Hydrazones/chemical synthesis , Indomethacin/pharmacology , Inflammation , Male , Mice , Molecular Docking Simulation , NG-Nitroarginine Methyl Ester/pharmacology , Nociceptive Pain/chemically induced , Nociceptive Pain/metabolism , Nociceptive Pain/physiopathology , Ondansetron/pharmacology , Prostaglandins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...