Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 226(4): 1031-1052, 2021 May.
Article in English | MEDLINE | ID: mdl-33532926

ABSTRACT

The identification of three somatostatin (SST) genes (SSTa, SSTb, and SSTc) in lampreys (Tostivint et al. Gen Comp Endocrinol 237:89-97 https://doi.org/10.1016/j.ygcen.2016.08.006 , 2016) prompted us to study their expression in the brain and spinal cord of the sea lamprey by in situ hybridization. These three genes were only expressed in equivalent neuronal populations in the hypothalamus. In other regions, SST transcripts showed clear differential expression. In the telencephalon, SSTc-positive cells were observed in the medial pallium, ventral part of the lateral pallium, striatum, subhippocampal lobe, and preoptic region. In the diencephalon, SSTa-positive cells were observed in the thalamus and SSTc-positive cells in the prethalamus, posterior tubercle, pretectal area, and nucleus of the medial longitudinal fascicle. In the midbrain, SSTc-positive cells were observed in the torus semicircularis, lateral reticular area, and perioculomotor tegmentum. Different SSTa- and SSTc-positive populations were observed in the isthmus. SSTc neurons were also observed in the rostral octavolateralis area and caudal rhombencephalon. In the spinal cord, SSTa was expressed in cerebrospinal-fluid-contacting (CSF-c) neurons and SSTc in non-CSF-c interneurons. Comparison with previous immunohistochemical studies using anti-SST-14 antibodies strongly suggests that SST-14-like neurons correspond with the SSTa populations. Thus, the SSTc populations were not reported previously in immunohistochemical studies. Cluster-based analyses and alignments of mature peptides suggested that SSTa is an ortholog of SST1 and that SSTb is closely related to SST2 and SST6. These results provide important new insights into the evolution of the somatostatinergic system in vertebrates.


Subject(s)
Central Nervous System , Petromyzon , Animals , Petromyzon/genetics , Somatostatin
2.
Neuropharmacology ; 131: 389-402, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29317225

ABSTRACT

Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional recovery is achieved.


Subject(s)
GABAergic Neurons/metabolism , Receptors, GABA-B/metabolism , Spinal Cord Injuries/physiopathology , Spinal Cord Regeneration , Spinal Cord/physiopathology , gamma-Aminobutyric Acid/metabolism , Animals , Cell Count , Fluorescent Antibody Technique , GABAergic Neurons/pathology , Lampreys , Microscopy, Fluorescence , Movement/physiology , Random Allocation , Recovery of Function/physiology , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Spinal Cord Regeneration/physiology
3.
J Anat ; 231(5): 776-784, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28791699

ABSTRACT

Co-localization of dopamine with other classical neurotransmitters in the same neuron is a common phenomenon in the brain of vertebrates. In mammals, some dopaminergic neurons of the ventral tegmental area and the hypothalamus have a glutamatergic co-phenotype. However, information on the presence of this type of dopaminergic neurons in other vertebrate groups is very scant. Here, we aimed to provide new insights on the evolution of this neuronal co-phenotype by studying the presence of a dual dopaminergic/glutamatergic neuron phenotype in the central nervous system of lampreys. Double immunofluorescence experiments for dopamine and glutamate in adult sea lampreys revealed co-localization of both neurotransmitters in some neurons of the preoptic nucleus, the nucleus of the postoptic commissure, the dorsal hypothalamus and in cerebrospinal fluid-contacting cells of the caudal rhombencephalon and rostral spinal cord. Moreover, co-localization of dopamine and glutamate was found in dopaminergic fibres in a few brain regions including the lateral pallium, striatum, and the preoptic and postoptic areas but not in the brainstem. Our results suggest that the presence of neurons with a dopaminergic/glutamatergic co-phenotype is a primitive character shared by jawless and jawed vertebrates. However, important differences in the distribution of these neurons and fibres were noted among the few vertebrates investigated to date. This study offers an anatomical basis for further work on the role of glutamate in dopaminergic neurons.


Subject(s)
Brain/cytology , Brain/metabolism , Dopaminergic Neurons/metabolism , Glutamic Acid/metabolism , Animals , Dopaminergic Neurons/cytology , Lampreys
4.
Neuroscience ; 194: 1-10, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21856380

ABSTRACT

Lampreys are jawless vertebrates, the most basal group of extant vertebrates. This phylogenetic position makes them invaluable models in comparative studies of the vertebrate central nervous system. Lampreys have been used as vertebrate models to study the neuronal circuits underlying locomotion control and axonal regeneration after spinal cord injury. Inhibitory inputs are key elements in the networks controlling locomotor behaviour, but very little is known about the descending inhibitory projections in lampreys. The aim of this study was to investigate the presence of brain-spinal descending inhibitory pathways in larval stages of the sea lamprey Petromyzon marinus by means of tract-tracing with neurobiotin, combined with immunofluorescence triple-labeling methods. Neurobiotin was applied in the rostral spinal cord at the level of the third gill, and inhibitory populations were identified by the use of cocktails of antibodies raised against glycine and GABA. Glycine-immunoreactive (-ir) neurons that project to the spinal cord were observed in three rhombencephalic reticular nuclei: anterior, middle and posterior. Spinal-projecting GABA-ir neurons were observed in the anterior and posterior reticular nuclei. Double glycine-ir/GABA-ir spinal cord-projecting neurons were only observed in the posterior reticular nucleus, and most glycine-ir neurons did not display GABA immunoreactivity. The present results reveal the existence of inhibitory descending projections from brainstem reticular neurons to the spinal cord, which were analyzed in comparative and functional contexts. Further studies should investigate which spinal cord circuits are affected by these descending inhibitory projections.


Subject(s)
Neural Inhibition/physiology , Petromyzon/physiology , Reticular Formation/physiology , Rhombencephalon/physiology , Spinal Cord/physiology , Animals , Efferent Pathways/anatomy & histology , Efferent Pathways/embryology , Efferent Pathways/physiology , Embryo, Nonmammalian/anatomy & histology , Embryo, Nonmammalian/physiology , Larva/anatomy & histology , Larva/physiology , Neuronal Tract-Tracers , Petromyzon/anatomy & histology , Petromyzon/embryology , Reticular Formation/anatomy & histology , Reticular Formation/embryology , Rhombencephalon/anatomy & histology , Rhombencephalon/embryology , Spinal Cord/anatomy & histology , Spinal Cord/embryology
5.
Neuroscience ; 168(3): 659-69, 2010 Jul 14.
Article in English | MEDLINE | ID: mdl-20417258

ABSTRACT

Lampreys belong to the oldest group of extant vertebrates, the agnathans or cyclostomes. Thus, they occupy a key phylogenetic position near the root of the vertebrate tree, which makes them important to the study of nervous system evolution. Tyrosine hydroxylase is the rate-limiting enzyme of catecholamine biosynthesis and is considered a marker of catecholaminergic neurons. In the present study, we report partial cloning of the sea lamprey tyrosine hydroxylase (TH) cDNA and the pattern of TH transcript expression in the adult brain by means of in situ hybridization. Sea lamprey TH mRNA is characterized by the presence of a large untranslated sequence in the 3' end that contains a typical polyadenylation signal (ATTAAA). The deduced partial TH protein sequence presents a conserved domain with two His residues coordinating Fe(2+) binding and a conserved cofactor binding site. Neurons expressing the TH transcript were observed in the preoptic, postoptic commissure, dorsal hypothalamic, ventral hypothalamic, mammillary and paratubercular nuclei of the prosencephalon. In situ hybridization experiments also confirmed the existence of a catecholaminergic (dopaminergic) striatal population in the brain of the adult sea lamprey. A few granule-like cells in the olfactory bulbs also showed weak TH transcript expression. No cells showing TH transcript expression were observed in the rostral rhombencephalon, which suggests the absence of a locus coeruleus in the sea lamprey. Comparison of the pattern of TH mRNA expression in the prosencephalon between lampreys and teleost fishes revealed both similarities and differences. Our results suggest that the duplication of the TH gene might have occurred before the separation of agnathans and gnathostomes.


Subject(s)
Brain/enzymology , DNA, Complementary/genetics , Tyrosine 3-Monooxygenase/biosynthesis , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , In Situ Hybridization , Molecular Sequence Data , Petromyzon , Phylogeny , RNA, Messenger/biosynthesis , Tyrosine 3-Monooxygenase/genetics
6.
Neuroscience ; 167(2): 396-413, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20167263

ABSTRACT

Lampreys are useful models for studying the evolution of the nervous system of vertebrates. Here we used immunofluorescence and tract-tracing methods to study new aspects of the neuropeptide Y-immunoreactive (NPY-ir) system in larval sea lampreys. NPY-ir neurons were observed in brain nuclei that contain NPY-ir cells in other lamprey species. Moreover, a group of NPY-ir cells that migrated away the periventricular layer was observed in the lateral part of the dorsal hypothalamus, which suggests a role for NPY in feeding behavior in lampreys. We also report NPY-ir cells in the dorsal column nucleus, which appears to be unique among vertebrates, and in the habenula. A combination of tract-tracing and immunohistochemical labeling demonstrated the presence of spinal projecting NPY-ir reticular cells in the anterior rhombencephalic reticular formation, and the relationships between the NPY-ir system and the reticulospinal nuclei and some afferent systems. The colocalization of catecholamines and GABA in lamprey NPY-ir neurons was investigated by double immunofluorescence methods. Colocalization of tyrosine hydroxylase (TH) and NPY immunoreactivities was not observed in any brain neuron, although reported in amphibians and mammals. The frequent presence of NPY-ir terminals on TH-ir cells suggests that NPY modulates the activity of some dopaminergic nuclei in lampreys. Colocalization of NPY and GABA immunoreactivities was frequently observed in neurons of different rhombencephalic and diencephalic NPY-ir populations. These results in lampreys suggest that the coexpression of NPY and GABA in neurons appeared early on in the brains of vertebrates.


Subject(s)
Lampreys/metabolism , Neurons/metabolism , Neuropeptide Y/metabolism , Animals , Brain/metabolism , Fluorescent Antibody Technique , Larva , Spinal Cord/metabolism , Tyrosine 3-Monooxygenase/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...