Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Clin Immunol ; 15(5): 529-540, 2019 05.
Article in English | MEDLINE | ID: mdl-30681380

ABSTRACT

INTRODUCTION: CD40 ligand (CD40L) deficiency or X-linked Hyper-IgM syndrome is a severe primary immunodeficiency caused by mutations in the CD40L gene. Despite currently available treatments, CD40L-deficient patients remain susceptible to life-threatening infections and have poor long term survival. Areas covered: Here, we discuss clinical and immunological characteristics of CD40L deficiency as well as current therapeutic strategies used for patient management. This review highlights that beyond B cell defects, patients' susceptibility to opportunistic pathogens might be due to impaired T cell and innate immune responses. In this context, we discuss how better knowledge of CD40L function and regulation may result in the development of new treatments. Expert opinion: Despite the introduction of hematopoietic stem-cell transplantation, immunoglobulin replacement, granulocyte colony-stimulating factor (G-CSF) administration, and prophylactic antibiotic therapies, life-threatening infections still cause high morbidity and mortality among CD40L-deficient patients. The reasons for this inadequate response to current therapies remains poorly understood, but recent reports suggest the involvement of CD40L-CD40 interaction in early stages of the innate immune system ontogeny. The development of novel gene therapeutic approaches and the use of redirected immunotherapies represent alternative treatment methods that could offer reduced morbidity and mortality rates for patients with CD40L deficiency.


Subject(s)
CD40 Ligand/deficiency , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cell Transplantation , Hyper-IgM Immunodeficiency Syndrome, Type 1 , Mutation , Allografts , Animals , CD40 Antigens/genetics , CD40 Antigens/immunology , CD40 Ligand/immunology , Disease-Free Survival , Genetic Therapy , Humans , Hyper-IgM Immunodeficiency Syndrome, Type 1/genetics , Hyper-IgM Immunodeficiency Syndrome, Type 1/immunology , Hyper-IgM Immunodeficiency Syndrome, Type 1/mortality , Hyper-IgM Immunodeficiency Syndrome, Type 1/therapy , Immunity, Innate/drug effects , Immunity, Innate/genetics , Survival Rate
3.
Front Pediatr ; 6: 230, 2018.
Article in English | MEDLINE | ID: mdl-30177960

ABSTRACT

We report a novel homozygous JAK3 mutation in two female Brazilian SCID infants from two unrelated kindreds. Patient 1 was referred at 2 months of age due to a family history of immunodeficiency and the appearance of a facial rash. The infant was screened for TRECs (T-cell receptor excision circles) and KRECs (kappa-deleting recombination excision circles) for the assessment of newly formed naïve T and B cells respectively, which showed undetectable TRECs and normal numbers of KRECs. Lymphocyte immunophenotyping by flow cytometry confirmed the screening results, revealing a T-B+NK- SCID. The patient underwent successful HSCT. Patient 2 was admitted to an intensive care unit at 8 months of age with severe pneumonia, BCGosis, and oral moniliasis; she also had a positive family history for SCID but newborn screening was not performed at birth. At 10 months of age she was diagnosed as a T-B+NK- SCID and underwent successful HSCT. JAK3 sequencing revealed the same homozygous missense mutation (c.2350G>A) in both patients. This mutation affects the last nucleotide of exon 17 and it is predicted to disrupt the donor splice site. cDNA sequencing revealed skipping of exon 17 missing in both patients, confirming the predicted effect on mRNA splicing. Skipping of exon 17 leads to an out of frame deletion of 151 nucleotides, frameshift and creation of a new stop codon 60 amino acids downstream of the mutation resulting in a truncated protein which is likely nonfunctional.

SELECTION OF CITATIONS
SEARCH DETAIL
...