Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 287(3): E537-46, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15126243

ABSTRACT

Muscle insulin resistance develops when plasma free fatty acids (FFAs) are acutely increased to supraphysiological levels (approximately 1,500-4,000 micromol/l). However, plasma FFA levels >1,000 micromol/l are rarely observed in humans under usual living conditions, and it is unknown whether insulin action may be impaired during a sustained but physiological FFA increase to levels seen in obesity and type 2 diabetes mellitus (T2DM) (approximately 600-800 micromol/l). It is also unclear whether normal glucose-tolerant subjects with a strong family history of T2DM (FH+) would respond to a low-dose lipid infusion as individuals without any family history of T2DM (CON). To examine these questions, we studied 7 FH+ and 10 CON subjects in whom we infused saline (SAL) or low-dose Liposyn (LIP) for 4 days. On day 4, a euglycemic insulin clamp with [3-3H]glucose and indirect calorimetry was performed to assess glucose turnover, combined with vastus lateralis muscle biopsies to examine insulin signaling. LIP increased plasma FFA approximately 1.5-fold, to levels seen in T2DM. Compared with CON, FH+ were markedly insulin resistant and had severely impaired insulin signaling in response to insulin stimulation. LIP in CON reduced insulin-stimulated glucose disposal (Rd) by 25%, insulin-stimulated insulin receptor tyrosine phosphorylation by 17%, phosphatidylinositol 3-kinase activity associated with insulin receptor substrate-1 by 20%, and insulin-stimulated glycogen synthase fractional velocity over baseline (44 vs. 15%; all P < 0.05). In contrast to CON, a physiological elevation in plasma FFA in FH+ led to no further deterioration in Rd or to any additional impairment of insulin signaling. In conclusion, a 4-day physiological increase in plasma FFA to levels seen in obesity and T2DM impairs insulin action/insulin signaling in CON but does not worsen insulin resistance in FH+. Whether this lack of additional deterioration in insulin signaling in FH+ is due to already well-established lipotoxicity, or to other molecular mechanisms related to insulin resistance that are nearly maximally expressed early in life, remains to be determined.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Fatty Acids, Nonesterified/blood , Insulin/metabolism , Signal Transduction/physiology , Adult , Blood Glucose/analysis , C-Peptide/blood , Fasting/metabolism , Female , Hormones/blood , Humans , Male , Middle Aged , Osmolar Concentration , Reference Values , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...