Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33678136

ABSTRACT

The physicochemical treatment (PT) of food industry wastewater was investigated. In the first stage, calcium magnesium acetate (CaMgAc4) was synthesized using eggshell (biocalcium), magnesium oxide and acetic acid in a 1:1:1 stoichiometric ratio. In the synthesis process, the thermodynamic parameters (ΔH, ΔS and ΔG) indicated that the reaction was endothermic and spontaneous. The samples were characterized by infrared spectroscopy (IR), scanning electronic microscopy (SEM), X-ray diffraction (XRD) and electron X-ray dispersive spectroscopy (EDS). CaMgAc4 was used to precipitate the phosphate matter. IR analysis revealed that the main functional groups were representative of the acetate compounds and the presence of OH- groups and carbonates. In the physicochemical treatment, a response surface design was used to determine the variables that influence the process (pH, t, and concentration), and the response variable was phosphorus removal. The treatments were carried out in the wastewater industry with an initial concentration of 658 mg/L TP. The optimal conditions of the precipitation treatment were pH 12, time 12 min, and a CaMgAc4 concentration of 13.18 mg/L. These conditions allowed the total elimination (100%) of total phosphorus and phosphates, 81.43% BOD5 and 81.0% COD, 98.9% turbidity, 95.01% color, and 92% nitrogen matter.


Subject(s)
Calcium/chemistry , Egg Shell/chemistry , Food Industry , Phosphates/isolation & purification , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Acetates/chemistry , Animals , Chemical Precipitation , Hydrogen-Ion Concentration , Magnesium Oxide/chemistry , Phosphates/analysis , Phosphates/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
2.
Materials (Basel) ; 13(6)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210192

ABSTRACT

Currently, azo dye Carmoisine is an additive that is widely used in the food processing industry sector. However, limited biodegradability in the environment has become a major concern regarding the removal of azo dye. In this study, the degradation of azo dye Carmoisine (acid red 14) in an aqueous solution was studied by using a sequenced process of electro-oxidation-plasma at atmospheric pressure (EO-PAP). Both the efficiency and effectiveness of the process were compared individually. To ascertain the behavior of azo dye Carmoisine over the degradation process, the variations in its physical characteristics were analyzed with a voltage-current relationship, optical emission spectra (OES) and temperature. On the other hand, chemical variables were analyzed by finding out pH, electrical conductivity, absorbance (UV/VIS Spectrophotometry), chemical oxygen demand (COD), cyclic voltammetry (CV), energy consumption and cost. The sequenced process (EO-PAP) increased degradation efficiency, reaching 100% for azo dye Carmoisine (acid red 14) in 60 min. It was observed that the introduction of small quantities of iron metal ions (Fe2+/Fe3+) as catalysts into the plasma process and the hydrogen peroxide formed in plasma electrical discharge led to the formation of larger amounts of hydroxyl radicals, thus promoting a better performance in the degradation of azo dye. This sequenced process increased the decolorization process.

3.
Article in English | MEDLINE | ID: mdl-25723067

ABSTRACT

The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.


Subject(s)
Copper/chemistry , Disinfection/methods , Hazardous Substances/chemistry , Hydrogen Peroxide/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Biological Oxygen Demand Analysis , Electrochemical Techniques , Enterobacteriaceae/drug effects , Flocculation , Wastewater/microbiology , Water Microbiology
4.
J Hazard Mater ; 223-224: 1-12, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22608208

ABSTRACT

Hexavalent chromium is of particular environmental concern due to its toxicity and mobility and is challenging to remove from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. It does not form insoluble compounds in aqueous solutions, so separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, Cr(III) cations are not. Like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI) to Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. In this review, we describe the environmental implications of Cr(VI) presence in aqueous solutions, the chemical species that could be present and then we describe the technologies available to efficiently reduce hexavalent chromium.


Subject(s)
Chromium/isolation & purification , Reducing Agents/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Biodegradation, Environmental , Electrochemical Techniques/methods , Oxidation-Reduction , Solubility , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...