Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37887203

ABSTRACT

FTIR (Fourier transform infrared spectroscopy) is one analytical technique of the absorption of infrared radiation. FTIR can also be used as a tool to characterize profiles of biomolecules in bacterial cells, which can be useful in differentiating different bacteria. Considering that different bacterial species have different molecular compositions, it will then result in unique FTIR spectra for each species and even bacterial strains. Having this important tool, here, we have developed a methodology aimed at refining the analysis and classification of the FTIR absorption spectra obtained from samples of Staphylococcus aureus, with the implementation of machine learning algorithms. In the first stage, the system conforming to four specified species groups, Control, Amoxicillin induced (AMO), Gentamicin induced (GEN), and Erythromycin induced (ERY), was analyzed. Then, in the second stage, five hidden samples were identified and correctly classified as with/without resistance to induced antibiotics. The total analyses were performed in three windows, Carbohydrates, Fatty Acids, and Proteins, of five hundred spectra. The protocol for acquiring the spectral data from the antibiotic-resistant bacteria via FTIR spectroscopy developed by Soares et al. was implemented here due to demonstrating high accuracy and sensitivity. The present study focuses on the prediction of antibiotic-induced samples through the implementation of the hierarchical cluster analysis (HCA), principal component analysis (PCA) algorithm, and calculation of confusion matrices (CMs) applied to the FTIR absorption spectra data. The data analysis process developed here has the main objective of obtaining knowledge about the intrinsic behavior of S. aureus samples within the analysis regions of the FTIR absorption spectra. The results yielded values with 0.7 to 1 accuracy and high values of sensitivity and specificity for the species identification in the CM calculations. Such results provide important information on antibiotic resistance in samples of S. aureus bacteria for potential application in the detection of antibiotic resistance in clinical use.

2.
Pharmaceutics ; 15(10)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37896167

ABSTRACT

Photodynamic (PDI) and sonodynamic (SDI) inactivation have been successfully employed as antimicrobial treatments. Moreover, sonophotodynamic inactivation (SPDI), which is the simultaneous application of PDI and SDI, has demonstrated greater effects. This study assessed the effects of PDI (PDI group), SDI (SDI group) and SPDI (SPDI group) using curcumin as a sensitizer on the metabolism, adhesion capability, biofilm formation ability and structural effects in a Staphylococcus aureus biofilm. Moreover, the production of reactive oxygen species (ROS) and the degradation spectrum of curcumin under the irradiation sources were measured. SPDI was more effective in inactivating the biofilm than PDI and SDI. All treatments reduced the adhesion ability of the bacteria: 58 ± 2%, 58 ± 1% and 71 ± 1% of the bacterial cells adhered to the polystyrene plate after the SPDI, SDI and PDI, respectively, when compared to 79 ± 1% of the untreated cells (control group). This result is probably related to the metabolism cell reduction after treatments. The metabolism of cells from the PDI group was 89 ± 1% lower than the untreated cells, while the metabolic activity of SDI and SPDI groups were 82 ± 2% and 90 ± 1% lower, respectively. Regarding the biofilm formation ability, all treatments (SPDI, SDI and PDI) reduced the total biomass. The total biomass of the PDI, SDI and SPDI groups were 26 ± 2%, 31 ± 5% and 35 ± 6% lower than the untreated biofilm (control group), respectively. Additionally, all treatments produced ROS and caused significant structural changes, reducing cells and the extracellular matrix. The light caused a greater absorbance decay of the curcumin; however, the US did not expressively alter its spectrum. Finally, SPDI had improved antimicrobial effects, and all treatments exhibited similar effects in the colonization factors evaluated.

3.
J Photochem Photobiol B ; 225: 112349, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34742031

ABSTRACT

PURPOSE: To investigate the safety of photobiomodulation therapy (PBM) in tumors and its potential as a radiosensitizer when combined with radiotherapy. METHODS: We have performed in vitro experiments in A431 cells to assess proliferation and cell cycle after PBM, as well as clonogenic assay and H2AX-gamma immunolabeling to quantify double strand breaks after the combination of PBM and radiation. In vivo experiments in xenografts included Kaplan-Meier survival analysis, optical coherence tomography (OCT) and histological analysis. RESULTS: PBM did not induce proliferation in vitro, but increased the G2/M fraction by 27% 24h after illumination, resulting in an enhancement of 30% in radiation effect in the clonogenic assay. The median survival of the PBM-RT group increased by 4 days and the hazard ratio was 0.417 (CI 95%: 0.173-1.006) when compared to radiation alone. OCT analysis over time demonstrated that PBM increases tumor necrosis due to radiation, and histological analysis showed that illumination increased cell differentiation and angiogenesis, which may play a role in the synergetic effect of PBM and radiation. CONCLUSION: PBM technique may be one of the most appropriate approaches for radiosensitizing tumors while protecting normal tissue because of its low cost and low training requirements for staff.


Subject(s)
Low-Level Light Therapy/methods , Neoplasms/therapy , Radiation-Sensitizing Agents/administration & dosage , Animals , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Humans , Mice , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/therapy
4.
Phys Chem Chem Phys ; 15(6): 2177-83, 2013 Feb 14.
Article in English | MEDLINE | ID: mdl-23247608

ABSTRACT

The predicted structure has been calculated for a protein-based biosensor for inorganic phosphate (Pi), previously developed by some of us (Okoh et al., Biochemistry, 2006, 45, 14764). This is the phosphate binding protein from Escherichia coli labelled with two rhodamine fluorophores. Classical molecular dynamics and hybrid Car-Parrinello/molecular mechanics simulations allow us to provide molecular models of the biosensor both in the presence and in the absence of Pi. In the latter case, the rhodamine fluorophores maintain a stacked conformation in a 'face A to face B' orientation, which is different from the 'face A to face A' stacked orientation of free fluorophores in aqueous solution (Ilich et al., Spectrochim. Acta, Part A, 1996, 52, 1323). A protein conformation change upon binding Pi prevents significant stacking of the two rhodamines. In both states, the rhodamine fluorophores form hydrophobic contact with LEU291, without establishing significant hydrogen bonds with the protein. The accuracy of the models is established by a comparison between calculated and experimental absorption and circular dichroism spectra.


Subject(s)
Biosensing Techniques , Rhodamines/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Phosphate-Binding Proteins/chemistry , Phosphate-Binding Proteins/metabolism , Phosphates/chemistry , Protein Binding , Protein Structure, Tertiary , Rhodamines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...