Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
J Nutr Gerontol Geriatr ; 42(3-4): 91-101, 2023.
Article in English | MEDLINE | ID: mdl-37738390

ABSTRACT

OBJECTIVE: To investigate factors associated with the nutritional status in institutionalized Mexican older adults. MATERIAL AND METHODS: In this cross-sectional study of residents in three long-term care facilities (LTCFs) in Monterrey, Mexico, a medical history, Mini-Mental State Examination, Barthel index, and geriatric depression scale, and Mini Nutritional Assessment (MNA) were performed. Risk of malnutrition and malnutrition status were defined as MNA 17-23.5 and <17, respectively. RESULTS: Residents (n = 280) had a median age of 85 years and 72.1% were female. A total of 116 (41.4%) were at risk of malnutrition and 35 (12.5%) were malnourished. Having malnutrition or being at risk of malnutrition was associated with age (OR = 1.048), functional dependence (OR = 8.376), body mass index (BMI) <22 (OR = 7.518), cognitive impairment (OR = 2.210), urinary incontinence (OR = 2.397), previous stroke (OR = 2.870), Parkinson's disease (OR = 5.193), use of calcium channel blockers (OR = 3.706), and use of atypical antipsychotics (OR = 2.277). Having benign prostatic hyperplasia (OR = 0.067) or the use of angiotensin II receptor blockers (OR = 0.038) were related to being well-nourished. CONCLUSIONS: In a population of residents of three LTCFs in Mexico, we found a high prevalence of malnutrition or being at risk of malnutrition. This underscores the need to implement guidelines for the prompt identification of this condition and further explanation of the factors identified as possibly related to malnutrition.


Subject(s)
Long-Term Care , Malnutrition , Humans , Female , Aged , Aged, 80 and over , Male , Cross-Sectional Studies , Mexico/epidemiology , Malnutrition/diagnosis , Nutritional Status , Nutrition Assessment , Geriatric Assessment , Risk Factors
2.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37765141

ABSTRACT

Cellular therapy has used mesenchymal stem cells (MSCs), which in cell culture are multipotent progenitors capable of producing a variety of cells limited to the mesoderm layer. There are two types of MSC sources: (1) adult MSCs, which are obtained from bone marrow, adipose tissue, peripheral blood, and dental pulp; and (2) neonatal-tissue-derived MSCs, obtained from extra-embryonic tissues such as the placenta, amnion, and umbilical cord. Until April 2023, 1120 registered clinical trials had been using MSC therapies worldwide, but there are only 12 MSC therapies that have been approved by regulatory agencies for commercialization. Nine of the twelve MSC-approved products are from Asia, with Republic of Korea being the country with the most approved therapies. In the future, MSCs will play an important role in the treatment of many diseases. However, there are many issues to deal with before their application and usage in the medical field. Some strategies have been proposed to face these problems with the hope of reaching the objective of applying these MSC therapies at optimal therapeutic levels.

3.
PLoS One ; 18(3): e0282741, 2023.
Article in English | MEDLINE | ID: mdl-36952491

ABSTRACT

The interaction between human Growth Hormone (hGH) and hGH Receptor (hGHR) has basic relevance to cancer and growth disorders, and hGH is the scaffold for Pegvisomant, an anti-acromegaly therapeutic. For the latter reason, hGH has been extensively engineered by early workers to improve binding and other properties. We are particularly interested in E174 which belongs to the hGH zinc-binding triad; the substitution E174A is known to significantly increase binding, but to now no explanation has been offered. We generated this and several computationally-selected single-residue substitutions at the hGHR-binding site of hGH. We find that, while many successfully slow down dissociation of the hGH-hGHR complex once bound, they also slow down the association of hGH to hGHR. The E174A substitution induces a change in the Circular Dichroism spectrum that suggests the appearance of coiled-coiling. Here we show that E174A increases affinity of hGH against hGHR because the off-rate is slowed down more than the on-rate. For E174Y (and certain mutations at other sites) the slowdown in on-rate was greater than that of the off-rate, leading to decreased affinity. The results point to a link between structure, zinc binding, and hGHR-binding affinity in hGH.


Subject(s)
Human Growth Hormone , Human Growth Hormone/chemistry , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Amino Acid Substitution , Protein Binding/genetics , Receptors, Somatotropin/metabolism , Protein Structure, Secondary/genetics , Alanine/chemistry , Alanine/genetics , Glutamic Acid/chemistry , Glutamic Acid/genetics , Zinc/chemistry , Conserved Sequence , Amino Acid Sequence
4.
Genes (Basel) ; 14(2)2023 01 17.
Article in English | MEDLINE | ID: mdl-36833167

ABSTRACT

The growth hormone (GH) locus has experienced a dramatic evolution in primates, becoming multigenic and diverse in anthropoids. Despite sequence information from a vast number of primate species, it has remained unclear how the multigene family was favored. We compared the structure and composition of apes' GH loci as a prerequisite to understanding their origin and possible evolutionary role. These thorough analyses of the GH loci of the chimpanzee, gorilla, and orangutan were done by resorting to previously sequenced bacterial artificial chromosomes (BACs) harboring them, as well as to their respective genome projects data available in GenBank. The GH loci of modern man, Neanderthal, gibbon, and wild boar were retrieved from GenBank. Coding regions, regulatory elements, and repetitive sequences were identified and compared among species. The GH loci of all the analyzed species are flanked by the genes CD79B (5') and ICAM-1 (3'). In man, Neanderthal, and chimpanzee, the loci were integrated by five almost indistinguishable genes; however, in the former two, they rendered three different hormones, and in the latter, four different proteins were derived. Gorilla exhibited six genes, gibbon seven, and orangutan four. The sequences of the proximal promoters, enhancers, P-elements, and a locus control region (LCR) were highly conserved. The locus evolution might have implicated duplications of the ancestral pituitary gene (GH-N) and subsequent diversification of the copies, leading to the placental single GH-V gene and the multiple CSH genes.


Subject(s)
Hominidae , Human Growth Hormone , Neanderthals , Animals , Female , Pregnancy , Hominidae/genetics , Pan troglodytes/genetics , Gorilla gorilla/genetics , Hylobates/genetics , Neanderthals/genetics , Base Sequence , Phylogeny , Placenta , Growth Hormone , Human Growth Hormone/genetics , Primates/genetics , Pongo/genetics
5.
Healthcare (Basel) ; 11(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36767006

ABSTRACT

Radical new possibilities of improved treatment of cancer are on offer from an advanced medical technology already demonstrating its significance: next-generation sequencing (NGS). This refined testing provides unprecedentedly precise diagnoses and permits the use of focused and highly personalized treatments. However, across regions globally, many cancer patients will continue to be denied the benefits of NGS as long as some of the yawning gaps in its implementation remain unattended. The challenges at the regional and national levels are linked because putting the solutions into effect is highly dependent on cooperation between regional- and national-level cooperation, which could be hindered by shortfalls in interpretation or understanding. The aim of the paper was to define and explore the necessary conditions for NGS and make recommendations for effective implementation based on extensive exchanges with policy makers and stakeholders. As a result, the European Alliance for Personalised Medicine (EAPM) developed a maturity framework structured around demand-side and supply-side issues to enable interested stakeholders in different countries to self-evaluate according to a common matrix. A questionnaire was designed to identify the current status of NGS implementation, and it was submitted to different experts in different institutions globally. This revealed significant variability in the different aspects of NGS uptake. Within different regions globally, to ensure those conditions are right, this can be improved by linking efforts made at the national level, where patients have needs and where care is delivered, and at the global level, where major policy initiatives in the health field are underway or in preparation, many of which offer direct or indirect pathways for building those conditions. In addition, in a period when consensus is still incomplete and catching up is needed at a political level to ensure rational allocation of resources-even within individual countries-to enable the best ways to make the necessary provisions for NGS, a key recommendation is to examine where closer links between national and regional actions could complement, support, and mutually reinforce efforts to improve the situation for patients.

6.
Diagnosis (Berl) ; 10(2): 140-157, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36548810

ABSTRACT

OBJECTIVES: The introduction of Personalised Medicine (PM) into healthcare systems could benefit from a clearer understanding of the distinct national and regional frameworks around the world. Recent engagement by international regulators on maximising the use of real-world evidence (RWE) has highlighted the scope for improving the exploitation of the treasure-trove of health data that is currently largely neglected in many countries. The European Alliance for Personalised Medicine (EAPM) led an international study aimed at identifying the current status of conditions. METHODS: A literature review examined how far such frameworks exist, with a view to identifying conducive factors - and crucial gaps. This extensive review of key factors across 22 countries and 5 regions revealed a wide variety of attitudes, approaches, provisions and conditions, and permitted the construction of a comprehensive overview of the current status of PM. Based on seven key pillars identified from the literature review and expert panels, the data was quantified, and on the basis of further analysis, an index was developed to allow comparison country by country and region by region. RESULTS: The results show that United States of America is leading according to overall outcome whereas Kenya scored the least in the overall outcome. CONCLUSIONS: Still, common approaches exist that could help accelerate take-up of opportunities even in the less prosperous parts of the world.


Subject(s)
Delivery of Health Care , Medicine , Humans , United States , Delivery of Health Care/methods , Power, Psychological
7.
Healthcare (Basel) ; 10(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36360466

ABSTRACT

Tackling cancer is a major challenge right on the global level. Europe is only the tip of an iceberg of cancer around the world. Prosperous developed countries share the same problems besetting Europe-and the countries and regions with fewer resources and less propitious conditions are in many cases struggling often heroically against a growing tide of disease. This paper offers a view on these geographically wider, but essentially similar, challenges, and on the prospects for and barriers to better results in this ceaseless battle. A series of panels have been organized by the European Alliance for Personalised Medicine (EAPM) to identify different aspects of cancer care around the globe. There is significant diversity in key issues such as NGS, RWE, molecular diagnostics, and reimbursement in different regions. In all, it leads to disparities in access and diagnostics, patients' engagement, and efforts for a better understanding of cancer.

8.
Microbiol Spectr ; 10(6): e0147722, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36314981

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first detected in Mexico in February 2020. Even though health authorities did not perceive then the value of viral detection tests, we anticipated the demand for them. We set up to develop an expeditious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular diagnostic service through the implementation of standardized protocols for biospecimen sampling, transportation, biobanking, preanalytical validation, and nucleic acids (NA) testing (NAT). Nasopharyngeal and oropharyngeal swabs collected in a special transportation medium were the biospecimens from which NAs were purified either manually or automatically. Viral RNA genome presence was determined using commercial SARS-CoV-2 detection kits (based on reverse transcription coupled with real-time PCR [RT-PCR]). Improvements in laboratory processing speed and reliability resulted from semi-automatizing laboratory processes and adopting a quality control/quality assurance system (QC/QA), respectively. NAs that were purified, either manually or automatically, were validated by preanalytical spectrophotometric characterization. Automated purification was less prone to contamination and reduced the processing time. The following six RT-PCR kits were evaluated for their convenience, specificity, sensitivity, time consumption, and required materials (in order, starting with the kit with the best results): RIDA gene and Viasure (tied), Vircell, LightMix, 1copy, and Logix Smart. Redesigning the laboratories' working areas, equipment, fluxes of personnel and material, and personnel skills, and overemphasizing biosafety safeguards were major challenges encountered in the middle of the sanitary crisis. Adopting a QC/QA system, utilizing automatization processes, and working closely with health authorities were key factors in our success. IMPORTANCE Rearranging our diagnostic laboratories to improve the fight against a new unexpected, unpredictable, and sudden public health threat demanded that we move quickly to redesign not only the laboratory processes but also the distribution of space, personnel activities, and fluxes of material coming in and out. We also had to work closely with governmental health authorities to gain their trust in our technical competence. Gaining the confidence of the clients, i.e., mainly individuals, the human resource departments of factories and corporations sending employees for testing, and medical institutions, and implementing as much automatization as possible of processes, in which only officially approved reagents (for extraction and analysis of NA) were used to generate opportune trustable testing results, were key factors. Our laboratories have gathered a considerable amount of experience and significant number of solutions, considering our geographic contexts alongside this continuously morphing pandemic, validating many techniques that might help other laboratories find a better and more precise workflow.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Laboratories , Pandemics , Reproducibility of Results , Biological Specimen Banks
10.
World J Oncol ; 12(4): 85-92, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34349852

ABSTRACT

Ovarian cancer (OC) represents a serious health problem worldwide. In Mexico, most OC patients are detected at late stages, consequently making OC one of the leading causes of death in women after reaching puberty. Personalized medicine (PM) provides an individualized therapeutic opportunity for treating each patient relying on "omic" tools to match the correct drug with the specific pathogenic genomic signature. PM can help predict the best therapeutic option for each affected woman suffering from OC. In recent years, Mexico has made contributions to the PM of OC; however, it still has a long way to go for its full implementation in the country's health system.

11.
NPJ Breast Cancer ; 7(1): 107, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34413315

ABSTRACT

The prevalence and contribution of BRCA1/2 (BRCA) pathogenic variants (PVs) to the cancer burden in Latin America are not well understood. This study aims to address this disparity. BRCA analyses were performed on prospectively enrolled Latin American Clinical Cancer Genomics Community Research Network participants via a combination of methods: a Hispanic Mutation Panel (HISPANEL) on MassARRAY; semiconductor sequencing; and copy number variant (CNV) detection. BRCA PV probability was calculated using BRCAPRO. Among 1,627 participants (95.2% with cancer), we detected 236 (14.5%) BRCA PVs; 160 BRCA1 (31% CNVs); 76 BRCA2 PV frequency varied by country: 26% Brazil, 9% Colombia, 13% Peru, and 17% Mexico. Recurrent PVs (seen ≥3 times), some region-specific, represented 42.8% (101/236) of PVs. There was no ClinVar entry for 14% (17/125) of unique PVs, and 57% (111/196) of unique VUS. The area under the ROC curve for BRCAPRO was 0.76. In summary, we implemented a low-cost BRCA testing strategy and documented a significant burden of non-ClinVar reported BRCA PVs among Latin Americans. There are recurrent, population-specific PVs and CNVs, and we note that the BRCAPRO mutation probability model performs adequately. This study helps address the gap in our understanding of BRCA-associated cancer in Latin America.

12.
Pharmacology ; 106(11-12): 588-596, 2021.
Article in English | MEDLINE | ID: mdl-34265779

ABSTRACT

INTRODUCTION: Genetic variants could aid in predicting antidiabetic drug response by associating them with markers of glucose control, such as glycated hemoglobin (HbA1c). However, pharmacogenetic implementation for antidiabetics is still under development, as the list of actionable markers is being populated and validated. This study explores potential associations between genetic variants and plasma levels of HbA1c in 100 patients under treatment with metformin. METHODS: HbA1c was measured in a clinical chemistry analyzer (Roche), genotyping was performed in an Illumina-GSA array and data were analyzed using PLINK. Association and prediction models were developed using R and a 10-fold cross-validation approach. RESULTS: We identified genetic variants on SLC47A1, SLC28A1, ABCG2, TBC1D4, and ARID5B that can explain up to 55% of the interindividual variability of HbA1c plasma levels in diabetic patients under treatment. Variants on SLC47A1, SLC28A1, and ABCG2 likely impact the pharmacokinetics (PK) of metformin, while the role of the two latter can be related to insulin resistance and regulation of adipogenesis. CONCLUSIONS: Our results confirm previous genetic associations and point to previously unassociated gene variants for metformin PK and glucose control.


Subject(s)
DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/drug therapy , GTPase-Activating Proteins/genetics , Glycated Hemoglobin/genetics , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Blood Pressure , Body Mass Index , Female , Genotype , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Organic Cation Transport Proteins/genetics
13.
Ann Hepatol ; 20: 100197, 2021.
Article in English | MEDLINE | ID: mdl-32444248

ABSTRACT

Chronic liver diseases account for a considerable toll of incapacities, suffering, deaths, and resources of the nation's health systems. They can be prevented, treated or even cured when the diagnosis is made on time. Traditional liver biopsy remains the gold standard to diagnose liver diseases, but it has several limitations. Liquid biopsy is emerging as a superior alternative to surgical biopsy given that it surpasses the limitations: it is more convenient, readily and repeatedly accessible, safe, cheap, and provides a more detailed molecular and cellular representation of the individual patient's disease. Progress in understanding the molecular and cellular bases of diseased tissues and organs that normally release cells and cellular components into the bloodstream is catapulting liquid biopsy as a source of biomarkers for diagnosis, prognosis, and prediction of therapeutic response, thus supporting the realization of the promises of precision medicine. The review aims to summarize the evidence of the usefulness of liquid biopsy in liver diseases, including the presence of different biomarkers as circulating epithelial cells, cell-free nucleic acids, specific species of DNA and RNA, and the content of extracellular vesicles.


Subject(s)
Liquid Biopsy , Liver Diseases/diagnosis , Chronic Disease , Humans
14.
Arch Med Res ; 52(1): 93-101, 2021 01.
Article in English | MEDLINE | ID: mdl-32977984

ABSTRACT

INTRODUCTION: Human Mesenchymal Stem Cells (hMSCs) are multipotent stem cells capable of renewing themselves and differentiation in vitro into different kinds of tissues. In vivo hMSCs are sources of trophic factors modulating the immune system and inducing intrinsic stem cells to repair damaged tissues. Currently, there are multiple clinical trials (CT) using hMSCs for therapeutic purposes in a large number of clinical settings. MATERIAL AND METHODS: The search strategy on clinicaltrials.gov has focused on the key term "Mesenchymal Stem Cells", and the inclusion and exclusion criteria were separated into two stages. Stage 1, CT on phases 1-4: location, the field of application, phase, and status. For stage 2, CT that have published outcome results: field of application, treatment, intervention model, source, preparation methods, and results. RESULTS: By July 2020, there were a total of 1,138 registered CT. Most studies belong to either phase 2 (61.0%) or phase 1 (30.8%); most of them focused in the fields of traumatology, neurology, cardiology, and immunology. Only 18 clinical trials had published results: the most common source of isolation was bone marrow; the treatment varied from 1-200 M hMSCs; all of them have similar preparation methods; all of them have positive results with no serious adverse effects. CONCLUSIONS: There appears to be a broad potential for the clinical use of hMSCs with no reported serious adverse events. There are many trials in progress, their future results will help to explore the therapeutic potential of these promising cellular sources of medicinal signals.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/physiology , Cell Differentiation , Clinical Trials as Topic/methods , Humans , Medicine/statistics & numerical data , Medicine/trends , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/statistics & numerical data , Mesenchymal Stem Cell Transplantation/trends , Mesenchymal Stem Cells/cytology , Regenerative Medicine/methods , Regenerative Medicine/trends
15.
Rev. invest. clín ; 72(6): 337-343, Nov.-Dec. 2020. tab
Article in English | LILACS | ID: biblio-1289728

ABSTRACT

Abstract Background: The presence of clinically relevant mutations in KRAS and NRAS genes determines the response of anti-epidermal growth factor receptor antibody therapy for metastatic colorectal cancer (mCRC). The only quantitative polymerase chain reaction (qPCR)-based diagnostic tests approved by the Food and Drug Administration (FDA) screen merely for mutations in codons 12 and 13 of KRAS. Objective: The objective of the study was to study the frequency of clinically relevant mutations in KRAS and NRAS genes that are not included in FDA-approved qPCR tests. Methods: Formalin-fixed paraffin-embedded tumor specimens from 1113 mCRC Mexican patients from different health institutions across the country were analyzed by Sanger sequencing for KRAS mutations in exons 2, 3, and 4. Furthermore, 83 were analyzed in exons 2, 3, and 4 of NRAS. Results: From the specimens tested for KRAS, 33.69% harbored a mutation. From these, 71.77% were in codon 12 and 27.69% in codon 13 (both located in exon 2). Codons 59 (exon 3) and 146 (exon 4) accounted for the remaining 0.54%. From the 83 specimens, in which NRAS was analyzed, three mutations were found in codon 12 (3.61%). Approximately 6% of RAS mutated specimens would have been falsely reported as RAS wild type if an FDA-approved qPCR diagnostic test had been used. Conclusions: While these kits based on qPCR can be very practical and highly sensitive, their mutation coverage ignores mutations from poorly genetically characterized populations.


Subject(s)
Humans , Polymerase Chain Reaction , Exons/genetics , Proto-Oncogene Proteins p21(ras)/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mutation , Reagent Kits, Diagnostic , United States , United States Food and Drug Administration , Commerce
16.
Rev Invest Clin ; 72(6): 337-343, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33053566

ABSTRACT

BACKGROUND: The presence of clinically relevant mutations in KRAS and NRAS genes determines the response of anti-epidermal growth factor receptor antibody therapy for metastatic colorectal cancer (mCRC). The only quantitative polymerase chain reaction (qPCR)-based diagnostic tests approved by the Food and Drug Administration (FDA) screen merely for mutations in codons 12 and 13 of KRAS. OBJECTIVE: The objective of the study was to study the frequency of clinically relevant mutations in KRAS and NRAS genes that are not included in FDA-approved qPCR tests. METHODS: Formalin-fixed paraffin-embedded tumor specimens from 1113 mCRC Mexican patients from different health institutions across the country were analyzed by Sanger sequencing for KRAS mutations in exons 2, 3, and 4. Furthermore, 83 were analyzed in exons 2, 3, and 4 of NRAS. RESULTS: From the specimens tested for KRAS, 33.69% harbored a mutation. From these, 71.77% were in codon 12 and 27.69% in codon 13 (both located in exon 2). Codons 59 (exon 3) and 146 (exon 4) accounted for the remaining 0.54%. From the 83 specimens, in which NRAS was analyzed, three mutations were found in codon 12 (3.61%). Approximately 6% of RAS mutated specimens would have been falsely reported as RAS wild type if an FDA-approved qPCR diagnostic test had been used. CONCLUSIONS: While these kits based on qPCR can be very practical and highly sensitive, their mutation coverage ignores mutations from poorly genetically characterized populations.


Subject(s)
Exons/genetics , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Mutation , Polymerase Chain Reaction , Proto-Oncogene Proteins p21(ras)/genetics , Commerce , Humans , Reagent Kits, Diagnostic , United States , United States Food and Drug Administration
17.
PLoS One ; 15(7): e0235490, 2020.
Article in English | MEDLINE | ID: mdl-32628708

ABSTRACT

Mutations in KRAS, NRAS, and BRAF (RAS/BRAF) genes are the main predictive biomarkers for the response to anti-EGFR monoclonal antibodies (MAbs) targeted therapy in metastatic colorectal cancer (mCRC). This retrospective study aimed to report the mutational status prevalence of these genes, explore their possible associations with clinicopathological features, and build and validate a predictive model. To achieve these objectives, 500 mCRC Mexican patients were screened for clinically relevant mutations in RAS/BRAF genes. Fifty-two percent of these specimens harbored clinically relevant mutations in at least one screened gene. Among these, 86% had a mutation in KRAS, 7% in NRAS, 6% in BRAF, and 2% in both NRAS and BRAF. Only tumor location in the proximal colon exhibited a significant correlation with KRAS and BRAF mutational status (p-value = 0.0414 and 0.0065, respectively). Further t-SNE analyses were made to 191 specimens to reveal patterns among patients with clinical parameters and KRAS mutational status. Then, directed by the results from classical statistical tests and t-SNE analysis, neural network models utilized entity embeddings to learn patterns and build predictive models using a minimal number of trainable parameters. This study could be the first step in the prediction for RAS/BRAF mutational status from tumoral features and could lead the way to a more detailed and more diverse dataset that could benefit from machine learning methods.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , GTP Phosphohydrolases/genetics , Membrane Proteins/genetics , Models, Statistical , Mutation Rate , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Cohort Studies , Colorectal Neoplasms/epidemiology , Female , Humans , Male , Mexico/epidemiology , Middle Aged , Neural Networks, Computer , Retrospective Studies
18.
Sci Rep ; 10(1): 8900, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483134

ABSTRACT

Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. As pharmacokinetics, metabolism and response vary among individuals, we wanted to determine the most reliable metabolic ATV phenotypes and identify novel and preponderant genetic markers that affect ATV plasma levels. A controlled, randomized, crossover, single-blind, three-treatment, three-period, and six-sequence clinical study of ATV (single 80-mg oral dose) was conducted among 60 healthy Mexican men. ATV plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed by real-time PCR with TaqMan probes. Four ATV metabolizer phenotypes were found: slow, intermediate, normal and fast. Six gene polymorphisms, SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer. This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. Notwithstanding, the influence of other genetic and non-genetic factors is not ruled out.


Subject(s)
Atorvastatin/administration & dosage , Atorvastatin/blood , Liver-Specific Organic Anion Transporter 1/genetics , Pharmacogenomic Variants , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Arylamine N-Acetyltransferase/genetics , Atorvastatin/pharmacokinetics , Catechol O-Methyltransferase/genetics , Chromatography, Liquid , Cross-Over Studies , Cytochrome P-450 CYP2D6/genetics , Genotyping Techniques , Healthy Volunteers , Humans , Male , Mass Spectrometry , Mexico , Polymorphism, Single Nucleotide , Single-Blind Method , Young Adult
19.
Viruses ; 12(4)2020 03 31.
Article in English | MEDLINE | ID: mdl-32244347

ABSTRACT

Persistent high-risk human papillomavirus (HR-HPV) infections play a major role in the development of invasive cervical cancer (CC), and screening for such infections is in many countries the primary method of detecting and preventing CC. HPV typing can be used for triage and risk stratification of women with atypical squamous cells of undetermined significance (ASC-US)/low-grade cervical lesions (LSIL), though the current clinical practice in Mexico is to diagnose CC or its preceding conditions mainly via histology and HR-HPV detection. Additional information regarding these HPV infections, such as viral load and co-infecting agents, might also be useful for diagnosing, predicting, and evaluating the possible consequences of the infection and of its prevention by vaccination. The goal of this follow-up hospital case study was to determine if HPV types, multiple HPV infections, and viral loads were associated with infection persistence and the cervical lesion grade. A total of 294 cervical cytology samples drawn from patients with gynecological alterations were used in this study. HPV types were identified by real-time PCR DNA analysis. A subset of HPV-positive patients was reevaluated to identify persistent infections. We identified HPV types 16, 18, and 39 as the most prevalent. One hundred five of the patients (59%) were infected with more than one type of HPV. The types of HPV associated with multiple HPV infections were 16, 18, and 39. In the follow-up samples, 38% of patients had not cleared the initially detected HPV infection, and these were considered persistent. We found here an association between multiple HPV infections and high viral loads with and infection persistence. Our findings suggest there are benefits in ascertaining viral load and multiple HPV infections status of HR-HPV infections for predicting the risk of persistence, a requirement for developing CC. These findings contribute to our understanding of HPV epidemiology and may allow screening programs to better assess the cancer-developing risks associated with individual HR-HPV infections.


Subject(s)
Coinfection/virology , Papillomaviridae/isolation & purification , Papillomavirus Infections/virology , Viral Load , Adult , Coinfection/epidemiology , Coinfection/pathology , DNA, Viral/genetics , Female , Follow-Up Studies , Genotype , Humans , Mexico/epidemiology , Papanicolaou Test , Papillomaviridae/classification , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , Papillomavirus Infections/pathology , Prevalence , Vaginal Smears
20.
Genomics ; 112(1): 721-728, 2020 01.
Article in English | MEDLINE | ID: mdl-31078717

ABSTRACT

Personalized medicine, one of the main promises of the Human Genome Project (HGP) that began three decades ago, is now a new therapeutic paradigm. With its arrival the era of developing drugs to suit all patients, yet often having to withdraw a promising new one because a minority of patients was at risk, even though it had proved valuable for the majority was consigned to history as were trial-and-error strategies being the predominant means of tailoring therapy. But how did it originate and the earliest examples emerge? Is it true that the first personalized diagnostic test was the companion test for Herceptin®? This account of a remarkable journey from genomic and translational research to therapeutic and diagnostic innovations, describes how sequencing the human growth hormone (hGH) locus provided proof of principle for HGP-inspired personalized medicine. Sequencing this locus and the resultant biomanufacture of HGH and the development of a test capable of detecting which patients would benefit from its administration helped silence the skeptics who questioned the validity of such an approach. The associated companion diagnostic was created four years before the invention of the HercepTest® (registered as the first companion diagnostics ever developed). By cultivating genomic research with passion and pursuing its applications, we and many others contributed to the emergence of a new diagnostics industry, the discovery of better actionable gene-targets and to a revitalized pharmaceutical industry capable of developing safer and more effective therapies. In combination, these developments are beginning to fulfill the promise of the HGP, offering each patient the opportunity to adopt the right treatment at the correct dosage in an opportune manner.


Subject(s)
Genetic Loci , Genomics , Precision Medicine , Human Growth Hormone/genetics , Human Growth Hormone/metabolism , Humans , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL
...