Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 176: 397-404, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28278428

ABSTRACT

Lead (Pb) is one of the most toxic anthropogenic pollutants, occurring widely in both terrestrial and aquatic ecosystems, where it impairs plant growth and development. In this work, the effect of 0.5 mM EDTA-Pb was evaluated in two Vigna unguiculata cultivars (SV and SET), with the aim of detecting genotype/cultivar dependent changes in the physiological and anti-oxidant responses (CAT and APX) of a leguminous plant. The data showed that SV accumulated more Pb in roots while SET accumulated more in leaves, indicating differential regulation in Pb-translocation/accumulation. Lead affected the growth of SV less severely than SET, mainly associated with reduced inhibition in photosynthetic parameters. Furthermore, CAT and APX activities increased or were sustained at elevated levels in both cultivars in response to lead. However, gene expression analyses revealed that CAT1 was the main lead responsive gene in SET while CAT2 was more responsive in SV. APX1 was higher expressed in tissues with higher Pb-accumulation while APX2 was ubiquitously responsive to lead in both cultivars. Taken together, these results reveal differential ability of V. unguiculata cultivars in Pb-accumulation in different tissues affecting distinctly physiological and anti-oxidant responses. In addition, the existence of cultivars with predominant Pb-accumulation in aerial tissues invokes a need for studies to identify pollution-safe cultivars of leguminous plants to ensure food safety.


Subject(s)
Antioxidants/metabolism , Lead/analysis , Plant Leaves/drug effects , Plant Roots/drug effects , Soil Pollutants/analysis , Vigna/drug effects , Lead/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Roots/metabolism , Soil Pollutants/metabolism , Species Specificity , Vigna/growth & development , Vigna/metabolism
2.
Int J Biol Macromol ; 94(Pt A): 271-282, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27737777

ABSTRACT

A lectin from Canavalia virosa, Diocleinae subtribe, was purified by affinity chromatography with Sephadex G-50 matrix and named ConV. The primary structure of ConV was obtained by mass spectrometry and crystals were obtained by the vapor diffusion method at 293K and belonged to orthorhombic space group P21221 with two molecules in its asymmetric unit. The structure obtained presented Rfactor and Rfree of 18.91% and 24.92% respectively, with no residues in nonallowed regions of Ramachandran plot. The crystal structure was solved at 2.53Å and was demonstrated to be very similar to other lectins from the same subtribe. In inflammatory tests, ConV elicited paw edema, but incubation of lectin with glucose beforehand was able to reduce the edematogenic effect, indicating the involvement of the carbohydrate recognition domain in this process. The lectin also showed toxicity to rat C6 glioma cells, disrupting the mitochondrial membrane potential (ΔYm) and decreasing cell viability, indicating an anticancer potential for ConV. In silico studies confirmed that ConV interacts strongly with carbohydrates that comprise the N-glycans of glycoproteins. This finding corroborates the hypothesis which holds that the lectin domain interacts with glycans in molecular targets and that this contributes to the effects observed in biological activities.


Subject(s)
Anti-Inflammatory Agents/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Plant Extracts/chemistry , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Binding Sites , Canavalia , Cell Line, Tumor , Cell Survival/drug effects , Conserved Sequence , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Hydrogen Bonding , Male , Mannosides/chemistry , Mice , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Lectins/chemistry , Protein Binding , Protein Conformation, beta-Strand , Protein Structure, Quaternary , Rats , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...