Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Braz. J. Pharm. Sci. (Online) ; 59: e23063, 2023. tab, graf
Article in English | LILACS | ID: biblio-1505837

ABSTRACT

Abstract Doxorubicin (Dox) is a medication used in the treatment of cancerous tumors and hematologic malignancies with potentially serious side effects, including the risk of cardiotoxicity. Flavonoids are plant metabolites with antioxidant properties and can be extracted from Camellia sinensis (CS). The aim of this study is to evaluate the possible cardioprotective effect of CS against injuries induced by Dox in rats. A total of 32 animals were distributed into four groups: (1) control - intraperitoneal injection (I.P.) of 0.5 mL saline weekly and 1.0 mL water by gavage daily; (2) CS - 0.5 mL saline I.P. weekly and 200 mg/kg CS by gavage daily; (3) Dox - 5.0 mg/kg Dox I.P. weekly and 1.0 mL water by gavage daily; and (4) Dox+CS -5.0 mg/kg Dox I.P. weekly and 200 mg/kg CS by gavage daily. Clinical examinations, blood profiles, electrocardiograms, echocardiograms, and histological analyses of hearts were performed over 25 days. The animals in the Dox group showed changes in body weight and in erythrogram, leukogram, electrocardiography, and echocardiography readings. However, animals from the dox+CS group had significantly less change in body weight, improved cardiac function, and showed more preserved cardiac tissue. This study demonstrated that CS prevents dox-induced cardiotoxicity, despite enhancing the cytotoxic effect on blood cells


Subject(s)
Animals , Male , Rats , Doxorubicin/administration & dosage , Camellia sinensis/adverse effects , Cardiotoxicity , Echocardiography/instrumentation , Hematologic Neoplasms/pathology , Electrocardiography/instrumentation , Antioxidants/pharmacology
2.
Cardiovasc Toxicol ; 21(6): 462-471, 2021 06.
Article in English | MEDLINE | ID: mdl-33559838

ABSTRACT

Micrurus surinamensis is a coral snake from the Elapidae family of wide distribution in Amazonia Forest. Its venom contains neurotoxins that induce muscular and respiratory paralysis; however, its cardiovascular action is not yet characterized. The aim of this study was to investigate the cardiotoxic effects caused by M. surinamensis poisoning in rodents. Twelve guinea pigs (Cavia porcellus) were distributed in two groups (n = 6) named as control and envenomed. The control group received 0.2 ml of PBS/BSA via intramuscular injection (IM), while envenomed animals received 0.75 µg of venom per g of body weight, also via IM. Electrocardiographic examination (ECG) and biochemical serum tests were conducted before and 2 h after inoculation. ECG of the envenomed animals revealed severe progressive arrhythmias including atrioventricular block, supraventricular, and ventricular extrasystoles. Serum biochemistry showed significant increase in CK, CK-MB, and LDH enzymes corroborating the skeletal and cardiac muscle damage. Myonecrosis and degeneration were observed in both skeletal and heart muscle; nevertheless, transmission electron microscopy revealed cardiac muscle fibers fragmentation. In conclusion, M. surinamensis venom has a potent cardiotoxic activity eliciting arrhythmogenic effects and heart damage after only 2 h of envenomation.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Coral Snakes , Elapid Venoms/toxicity , Animals , Arrhythmias, Cardiac/physiopathology , Atrial Premature Complexes/chemically induced , Atrial Premature Complexes/physiopathology , Atrioventricular Block/chemically induced , Atrioventricular Block/physiopathology , Cardiotoxicity , Guinea Pigs , Heart Rate/drug effects , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Necrosis , Time Factors , Ventricular Premature Complexes/chemically induced , Ventricular Premature Complexes/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...