Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(12)2021 11 24.
Article in English | MEDLINE | ID: mdl-34960622

ABSTRACT

Hendra virus (HeV) is a zoonotic enveloped member of the family Paramyoxviridae. To successfully infect a host cell, HeV utilizes two surface glycoproteins: the attachment (G) protein to bind, and the trimeric fusion (F) protein to merge the viral envelope with the membrane of the host cell. The transmembrane (TM) region of HeV F has been shown to have roles in F protein stability and the overall trimeric association of F. Previously, alanine scanning mutagenesis has been performed on the C-terminal end of the protein, revealing the importance of ß-branched residues in this region. Additionally, residues S490 and Y498 have been demonstrated to be important for F protein endocytosis, needed for the proteolytic processing of F required for fusion. To complete the analysis of the HeV F TM, we performed alanine scanning mutagenesis to explore the residues in the N-terminus of this region (residues 487-506). In addition to confirming the critical roles for S490 and Y498, we demonstrate that mutations at residues M491 and L492 alter F protein function, suggesting a role for these residues in the fusion process.


Subject(s)
Hendra Virus/genetics , Henipavirus Infections/virology , Membrane Fusion , Viral Fusion Proteins/metabolism , Alanine/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Membrane/metabolism , Chlorocebus aethiops , Endocytosis , Endosomes/metabolism , Genes, Reporter , Hendra Virus/physiology , Humans , Mutagenesis, Site-Directed , Protein Domains , Protein Stability , Vero Cells , Viral Fusion Proteins/genetics
2.
J Biol Chem ; 297(1): 100902, 2021 07.
Article in English | MEDLINE | ID: mdl-34157282

ABSTRACT

The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2-infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell-cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.


Subject(s)
COVID-19/virology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cell Fusion , Cell Line , Chlorocebus aethiops , Humans , Protein Processing, Post-Translational , Protein Stability , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Attachment , Virus Internalization
3.
bioRxiv ; 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33532777

ABSTRACT

The SARS-CoV-2 spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell-cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2 infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell-cell fusion remain limited. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell-cell fusion, and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell-cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S cell-cell fusion. Additionally, we examine S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell-cell fusion, all of which help give a more comprehensive understanding of this highly sought-after therapeutic target.

4.
Viruses ; 12(7)2020 06 27.
Article in English | MEDLINE | ID: mdl-32604992

ABSTRACT

Initiation of host cell infection by an enveloped virus requires a viral-to-host cell membrane fusion event. This event is mediated by at least one viral transmembrane glycoprotein, termed the fusion protein, which is a key therapeutic target. Viral fusion proteins have been studied for decades, and numerous critical insights into their function have been elucidated. However, the transmembrane region remains one of the most poorly understood facets of these proteins. In the past ten years, the field has made significant advances in understanding the role of the membrane-spanning region of viral fusion proteins. We summarize developments made in the past decade that have contributed to the understanding of the transmembrane region of viral fusion proteins, highlighting not only their critical role in the membrane fusion process, but further demonstrating their involvement in several aspects of the viral lifecycle.


Subject(s)
Cell Membrane/virology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Viruses/metabolism , Animals , Humans , Viral Fusion Proteins/genetics , Virus Diseases/virology , Virus Internalization , Viruses/chemistry , Viruses/genetics
5.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31217248

ABSTRACT

Enveloped viruses utilize surface glycoproteins to bind and fuse with a target cell membrane. The zoonotic Hendra virus (HeV), a member of the family Paramyxoviridae, utilizes the attachment protein (G) and the fusion protein (F) to perform these critical functions. Upon triggering, the trimeric F protein undergoes a large, irreversible conformation change to drive membrane fusion. Previously, we have shown that the transmembrane (TM) domain of the F protein, separate from the rest of the protein, is present in a monomer-trimer equilibrium. This TM-TM association contributes to the stability of the prefusion form of the protein, supporting a role for TM-TM interactions in the control of F protein conformational changes. To determine the impact of disrupting TM-TM interactions, constructs expressing the HeV F TM with limited flanking sequences were synthesized. Coexpression of these constructs with HeV F resulted in dramatic reductions in the stability of F protein expression and fusion activity. In contrast, no effects were observed when the HeV F TM constructs were coexpressed with the nonhomologous parainfluenza virus 5 (PIV5) fusion protein, indicating a requirement for specific interactions. To further examine this, a TM peptide homologous to the PIV5 F TM domain was synthesized. Addition of the peptide prior to infection inhibited infection with PIV5 but did not significantly affect infection with human metapneumovirus, a related virus. These results indicate that targeted disruption of TM-TM interactions significantly impact viral fusion protein stability and function, presenting these interactions as a novel target for antiviral development.IMPORTANCE Enveloped viruses require virus-cell membrane fusion to release the viral genome and replicate. The viral fusion protein triggers from the pre- to the postfusion conformation, an essentially irreversible change, to drive membrane fusion. We found that small proteins containing the TM and a limited flanking region homologous to the fusion protein of the zoonotic Hendra virus reduced protein expression and fusion activity. The introduction of exogenous TM peptides may displace a TM domain, disrupting native TM-TM interactions and globally destabilizing the fusion protein. Supporting this hypothesis, we showed that a sequence-specific transmembrane peptide dramatically reduced viral infection in another enveloped virus model, suggesting a broader inhibitory mechanism. Viral fusion protein TM-TM interactions are important for protein function, and disruption of these interactions dramatically reduces protein stability.


Subject(s)
Paramyxovirinae/metabolism , Peptides/pharmacology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Animals , Binding Sites/drug effects , Chlorocebus aethiops , Hendra Virus/chemistry , Hendra Virus/genetics , Hendra Virus/metabolism , Hydrophobic and Hydrophilic Interactions/drug effects , Parainfluenza Virus 5/chemistry , Parainfluenza Virus 5/genetics , Parainfluenza Virus 5/metabolism , Paramyxovirinae/chemistry , Paramyxovirinae/genetics , Protein Conformation/drug effects , Protein Domains/drug effects , Protein Stability , Vero Cells , Viral Fusion Proteins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...