Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Opin Neurobiol ; 55: 55-64, 2019 04.
Article in English | MEDLINE | ID: mdl-30785004

ABSTRACT

Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains elusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations they learn. Thus, both machine learning and computational neuroscience are faced with a shared challenge: how can we analyze their representations in order to understand how they solve complex tasks? We review how data-analysis concepts and techniques developed by computational neuroscientists can be useful for analyzing representations in DNNs, and in turn, how recently developed techniques for analysis of DNNs can be useful for understanding representations in biological neural networks. We explore opportunities for synergy between the two fields, such as the use of DNNs as in silico model systems for neuroscience, and how this synergy can lead to new hypotheses about the operating principles of biological neural networks.


Subject(s)
Machine Learning , Neural Networks, Computer , Computer Simulation , Visual Perception
2.
Elife ; 52016 12 09.
Article in English | MEDLINE | ID: mdl-27935480

ABSTRACT

The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic.


Subject(s)
Brain/physiology , Neural Pathways/physiology , Neuronal Plasticity , Neurons/physiology , Animals , Brain/pathology , Humans , Models, Neurological , Nerve Degeneration , Neural Inhibition , Neurodegenerative Diseases/physiopathology , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...