Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 6: 115, 2020.
Article in English | MEDLINE | ID: mdl-33414928

ABSTRACT

In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (T c) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift in T c >12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.

2.
Microsyst Nanoeng ; 5: 14, 2019.
Article in English | MEDLINE | ID: mdl-31057941

ABSTRACT

The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d -4 (or d -3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology.

3.
Nano Lett ; 18(5): 2802-2806, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29683680

ABSTRACT

The fabrication of metallic electromagnetic meta-atoms on a soft microstructured polymer scaffold using a MEMS-based stencil lithography technique is demonstrated. Using this technique, complex metasurfaces that are generally impossible to fabricate with traditional photolithographic techniques are created. By engineering the mechanical deformation of the polymer scaffold, the metasurface reflectivity in the mid-infrared can be tuned by the application of moderate strains.

4.
Sci Rep ; 6: 19804, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26821604

ABSTRACT

Single-layer graphene has demonstrated remarkable electronic properties that are strongly influenced by interfacial bonding and break down for the lowest energy configuration of stacked graphene layers (AB Bernal). Multilayer graphene with relative rotations between carbon layers, known as turbostratic graphene, can effectively decouple the electronic states of adjacent layers, preserving properties similar to that of SLG. While the growth of AB Bernal graphene through chemical vapor deposition has been widely reported, we investigate the growth of turbostratic graphene on heteroepitaxial Ni(111) thin films utilizing physical vapor deposition. By varying the carbon deposition temperature between 800 -1100 °C, we report an increase in the graphene quality concomitant with a transition in the size of uniform thickness graphene, ranging from nanocrystallites to thousands of square microns. Combination Raman modes of as-grown graphene within the frequency range of 1650 cm(-1) to 2300 cm(-1), along with features of the Raman 2D mode, were employed as signatures of turbostratic graphene. Bilayer and multilayer graphene were directly identified from areas that exhibited Raman characteristics of turbostratic graphene using high-resolution TEM imaging. Raman maps of the pertinent modes reveal large regions of turbostratic graphene on Ni(111) thin films at a deposition temperature of 1100 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...