Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(8): 2632-2640, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37602288

ABSTRACT

The internal quantum efficiency of (In,Ga)N/GaN quantum wells can surpass 90% for blue-emitting structures at moderate drive current densities but decreases significantly for longer emission wavelengths and at higher excitation rates. This latter effect is known as efficiency "droop" and limits the brightness of light-emitting diodes (LEDs) based on such quantum wells. Several mechanisms have been proposed to explain efficiency droop including Auger recombination, both intrinsic and defect-assisted, carrier escape, and the saturation of localized states. However, it remains unclear which of these mechanisms is most important because it has proven difficult to reconcile theoretical calculations of droop with measurements. Here, we first present experimental photoluminescence measurements extending over three orders of magnitude of excitation for three samples grown at different temperatures that indicate that droop behavior is not dependent on the point defect density in the quantum wells studied. Second, we use an atomistic tight-binding electronic structure model to calculate localization-enhanced radiative and Auger rates and show that both the corresponding carrier density-dependent internal quantum efficiency and the carrier density decay dynamics are in excellent agreement with our experimental measurements. Moreover, we show that point defect density, Auger recombination, and the effect of the polarization field on recombination rates only limit the peak internal quantum efficiency to about 70% in the resonantly excited green-emitting quantum wells studied. This suggests that factors external to the quantum wells, such as carrier injection efficiency and homogeneity, contribute appreciably to the significantly lower peak external quantum efficiency of green LEDs.

2.
J Mech Behav Biomed Mater ; 88: 340-345, 2018 12.
Article in English | MEDLINE | ID: mdl-30199836

ABSTRACT

For patients that use tobacco or have diabetes, bone healing after orthopedic procedures is challenging. Direct current electrical stimulation has shown success clinically to significantly improve bone healing in these difficult-to-fuse populations. Energy harvesting with piezoelectric material has gained popularity in the last decade, but is challenging at low frequencies due to material properties that limit total power generation at these frequencies. Stacked generators have been used to increase power generation at lower voltage levels but have not been widely explored as a load-bearing biomaterial to provide DC stimulation. To match structural compliance levels and increase efficiency of power generation at low frequencies, the effect of compliant layers between piezoelectric discs was investigated. Compliant Layer Adaptive Composite Stacks (CLACS) were manufactured using five PZT discs connected electrically in parallel and stacked mechanically in series with a layer of low modulus epoxy between each disc. The stacks were encapsulated, keeping PZT and overall volume constant. Each stack was electromechanically tested by varying load, frequency, and resistance. As compliant layer thickness increased, power generation increased significantly across all loads, frequencies, and resistances measured. As expected, increase in frequency significantly increased power output for all groups. Similarly, an increase applied peak-to-peak mechanical load also significantly increased power output. The novel use of CLACS for power generation under load and frequencies experienced by typical orthopedic implants could provide an effective method to harvest energy and provide power without the use of a battery in multiple low frequency applications.


Subject(s)
Electric Stimulation/instrumentation , Mechanical Phenomena , Electric Power Supplies , Equipment Design , Materials Testing
5.
Int Anesthesiol Clin ; 5(3): 707-11, 1967.
Article in English | MEDLINE | ID: mdl-5593341
SELECTION OF CITATIONS
SEARCH DETAIL
...