Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Mol Ecol ; : e17419, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808559

ABSTRACT

The role of phenotypic plasticity during colonization remains unclear due to the shifting importance of plasticity across timescales. In the early stages of colonization, plasticity can facilitate persistence in a novel environment; but over evolutionary time, processes such as genetic assimilation may reduce variation in plastic traits such that species with a longer evolutionary history in an environment can show lower levels of plasticity than recent invaders. Therefore, comparing species in the early stages of colonization to long-established species provides a powerful approach for uncovering the role of phenotypic plasticity during different stages of colonization. We compared gene expression between low-dissolved oxygen (DO) and high-DO populations of two cyprinid fish: Enteromius apleurogramma, a species that has undergone a recent range expansion, and E. neumayeri, a long-established native species in the same region. We sampled tissue either immediately after capture from the field or after a 2-week acclimation under high-DO conditions, allowing us to test for both evolved and plastic differences in low-DO vs high-DO populations of each species. We found that most genes showing candidate-evolved differences in gene expression did not overlap with those showing plastic differences in gene expression. However, in the genes that did overlap, there was counter-gradient variation such that plastic and evolved gene expression responses were in opposite directions in both species. Additionally, E. apleurogramma had higher levels of plasticity and evolved divergence in gene expression between field populations. We suggest that the higher level of plasticity and counter-gradient variation may have allowed rapid genetic adaptation in E. apleurogramma and facilitated colonization. This study shows how counter-gradient variation may impact the colonization of divergent oxygen environments.

2.
Proc Biol Sci ; 291(2018): 20232625, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471561

ABSTRACT

Behavioural plasticity allows organisms to respond to environmental challenges on short time scales. But what are the ecological and evolutionary processes that underlie behavioural plasticity? The answer to this question is complex and requires experimental dissection of the physiological, neural and molecular mechanisms contributing to behavioural plasticity as well as an understanding of the ecological and evolutionary contexts under which behavioural plasticity is adaptive. Here, we discuss key insights that research with Trinidadian guppies has provided on the underpinnings of adaptive behavioural plasticity. First, we present evidence that guppies exhibit contextual, developmental and transgenerational behavioural plasticity. Next, we review work on behavioural plasticity in guppies spanning three ecological contexts (predation, parasitism and turbidity) and three underlying mechanisms (endocrinological, neurobiological and genetic). Finally, we provide three outstanding questions that could leverage guppies further as a study system and give suggestions for how this research could be done. Research on behavioural plasticity in guppies has provided, and will continue to provide, a valuable opportunity to improve understanding of the ecological and evolutionary causes and consequences of behavioural plasticity.


Subject(s)
Poecilia , Animals , Poecilia/physiology , Adaptation, Physiological , Predatory Behavior , Biological Evolution
3.
Insect Sci ; 31(2): 328-353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37596954

ABSTRACT

Evaluating whether hybrid zones are stable or mobile can provide novel insights for evolution and conservation biology. Butterflies exhibit high sensitivity to environmental changes and represent an important model system for the study of hybrid zone origins and maintenance. Here, we review the literature exploring butterfly hybrid zones, with a special focus on their spatiotemporal dynamics and the potential mechanisms that could lead to their movement or stability. We then compare different lines of evidence used to investigate hybrid zone dynamics and discuss the strengths and weaknesses of each approach. Our goal with this review is to reveal general conditions associated with the stability or mobility of butterfly hybrid zones by synthesizing evidence obtained using different types of data sampled across multiple regions and spatial scales. Finally, we discuss spatiotemporal dynamics in the context of a speciation/divergence continuum, the relevance of hybrid zones for conservation biology, and recommend key topics for future investigation.


Subject(s)
Butterflies , Animals , Hybridization, Genetic
4.
Proc Biol Sci ; 290(2011): 20231174, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38018103

ABSTRACT

Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.


Subject(s)
Ecosystem , Microbiota , Humans , Bacteria , Biota , Stochastic Processes
5.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37671423

ABSTRACT

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Subject(s)
Finches , Passeriformes , Animals , Finches/genetics , Selection, Genetic , Phenotype , Ecuador , Beak
6.
Am Nat ; 201(4): 537-556, 2023 04.
Article in English | MEDLINE | ID: mdl-36958004

ABSTRACT

AbstractDetermining whether and how evolution is predictable is an important goal, particularly as anthropogenic disturbances lead to novel species interactions that could modify selective pressures. Here, we use a multigeneration field experiment with brown anole lizards (Anolis sagrei) to test hypotheses about the predictability of evolution. We manipulated the presence/absence of predators and competitors of A. sagrei across 16 islands in the Bahamas that had preexisting brown anole populations. Before the experiment and again after roughly five generations, we measured traits related to locomotor performance and habitat use by brown anoles and used double-digest restriction enzyme-associated DNA sequencing to estimate genome-wide changes in allele frequencies. Although previous work showed that predators and competitors had characteristic effects on brown anole behavior, diet, and population sizes, we found that evolutionary change at both phenotypic and genomic levels was difficult to forecast. Phenotypic changes were contingent on sex and habitat use, whereas genetic change was unpredictable and not measurably correlated with phenotypic changes, experimental treatments, or other environmental factors. Our work shows how differences in ecological context can alter evolutionary outcomes over short timescales and underscores the difficulty of forecasting evolutionary responses to multispecies interactions in natural conditions, even in a well-studied system with ample supporting ecological information.


Subject(s)
Lizards , Animals , Lizards/genetics , Ecosystem , Bahamas , Phenotype , Diet
7.
Curr Biol ; 33(4): 755-763.e3, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36702128

ABSTRACT

Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.


Subject(s)
Chromatophores , Lizards , Piebaldism , Animals , Mice , Zebrafish , Lizards/genetics , Pigmentation/genetics , Zebrafish Proteins , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
8.
Mol Ecol ; 32(7): 1581-1591, 2023 04.
Article in English | MEDLINE | ID: mdl-36560898

ABSTRACT

Repeated phenotypic patterns among populations undergoing parallel evolution in similar environments provide support for the deterministic role of natural selection. Epigenetic modifications can mediate plastic and evolved phenotypic responses to environmental change and might make important contributions to parallel adaptation. While many studies have explored the genetic basis of repeated phenotypic divergence, the role of epigenetic processes during parallel adaptation remains unclear. The parallel evolution of freshwater ecotypes of threespine stickleback fish (Gasterosteus aculeatus) following colonization of thousands of lakes and streams from the ocean is a classic example of parallel phenotypic and genotypic adaptation. To investigate epigenetic modifications during parallel adaptation of threespine stickleback, we reanalysed three independent data sets that investigated DNA methylation variation between marine and freshwater ecotypes. Although we found widespread methylation differentiation between ecotypes, there was no significant tendency for CpG sites associated with repeated methylation differentiation across studies to be parallel versus nonparallel. To next investigate the role of plastic versus evolved changes in methylation during freshwater adaptation, we explored if CpG sites exhibiting methylation plasticity during salinity change were more likely to also show evolutionary divergence in methylation between ecotypes. The directions of divergence between ecotypes were generally in the opposite direction to those observed for plasticity when ecotypes were challenged with non-native salinity conditions, suggesting that most plastic responses are likely to be maladaptive during colonization of new environments. Finally, we found a greater number of CpG sites showing evolved changes when ancestral marine ecotypes are acclimated to freshwater environments, whereas plastic changes predominate when derived freshwater ecotypes transition back to their ancestral marine environments. These findings provide evidence for an epigenetic contribution to parallel adaptation and demonstrate the contrasting roles of plastic and evolved methylation differences during adaptation to new environments.


Subject(s)
DNA Methylation , Smegmamorpha , Animals , DNA Methylation/genetics , Adaptation, Physiological/genetics , Acclimatization/genetics , Lakes , Smegmamorpha/genetics
9.
Ecol Evol ; 12(9): e9286, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177141

ABSTRACT

Identifying the relative importance of different mechanisms responsible for the emergence and maintenance of phenotypic diversity can be challenging, as multiple selective pressures and stochastic events are involved in these processes. Therefore, testing how environmental conditions shape the distribution of phenotypes can offer important insights on local adaptation, divergence, and speciation. The red-yellow Müllerian mimicry ring of Heliconius butterflies exhibits a wide diversity of color patterns across the Neotropics and is involved in multiple hybrid zones, making it a powerful system to investigate environmental drivers of phenotypic distributions. Using the distantly related Heliconius erato and Heliconius melpomene co-mimics and a multiscale distribution approach, we investigated whether distinct phenotypes of these species are associated with different environmental conditions. We show that Heliconius red-yellow phenotypic distribution is strongly driven by environmental gradients (especially thermal and precipitation variables), but that phenotype and environment associations vary with spatial scale. While co-mimics are usually predicted to occur in similar environments at large spatial scales, patterns at local scales are not always consistent (i.e., different variables are best predictors of phenotypic occurrence in different locations) or congruent (i.e., co-mimics show distinct associations with environment). We suggest that large-scale analyses are important for identifying how environmental factors shape broad mimetic phenotypic distributions, but that local studies are essential to understand the context-dependent biotic, abiotic, and historical mechanisms driving finer-scale phenotypic transitions.

10.
Ecol Evol ; 12(4): e8768, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35494501

ABSTRACT

Movement patterns and habitat selection of animals have important implications for ecology and evolution. Darwin's finches are a classic model system for ecological and evolutionary studies, yet their spatial ecology remains poorly studied. We tagged and radio-tracked five (three females, two males) medium ground finches (Geospiza fortis) to examine the feasibility of telemetry for understanding their movement and habitat use. Based on 143 locations collected during a 3-week period, we analyzed for the first time home-range size and habitat selection patterns of finches at El Garrapatero, an arid coastal ecosystem on Santa Cruz Island (Galápagos). The average 95% home range and 50% core area for G. fortis in the breeding season was 20.54 ha ± 4.04 ha SE and 4.03 ha ± 1.11 ha SE, respectively. For most of the finches, their home range covered a diverse set of habitats. Three finches positively selected the dry-forest habitat, while the other habitats seemed to be either negatively selected or simply neglected by the finches. In addition, we noted a communal roosting behavior in an area close to the ocean, where the vegetation is greener and denser than the more inland dry-forest vegetation. We show that telemetry on Darwin's finches provides valuable data to understand the movement ecology of the species. Based on our results, we propose a series of questions about the ecology and evolution of Darwin's finches that can be addressed using telemetry.

11.
Mol Ecol ; 31(8): 2312-2326, 2022 04.
Article in English | MEDLINE | ID: mdl-35152483

ABSTRACT

Species distribution models (SDMs) are widely used to predict range shifts but could be unreliable under climate change scenarios because they do not account for evolution. The thermal physiology of a species is a key determinant of its range and thus incorporating thermal trait evolution into SDMs might be expected to alter projected ranges. We identified a genetic basis for physiological and behavioural traits that evolve in response to temperature change in natural populations of threespine stickleback (Gasterosteus aculeatus). Using these data, we created geographical range projections using a mechanistic niche area approach under two climate change scenarios. Under both scenarios, trait data were either static ("no evolution" models), allowed to evolve at observed evolutionary rates ("evolution" models) or allowed to evolve at a rate of evolution scaled by the trait variance that is explained by quantitative trait loci (QTL; "scaled evolution" models). We show that incorporating these traits and their evolution substantially altered the projected ranges for a widespread panmictic marine population, with over 7-fold increases in area under climate change projections when traits are allowed to evolve. Evolution-informed SDMs should improve the precision of forecasting range dynamics under climate change, and aid in their application to management and the protection of biodiversity.


Subject(s)
Climate Change , Smegmamorpha , Animals , Phenotype , Quantitative Trait Loci/genetics , Smegmamorpha/genetics
12.
PLoS One ; 16(8): e0249439, 2021.
Article in English | MEDLINE | ID: mdl-34437552

ABSTRACT

We demonstrate that simple, non-invasive environmental DNA (eDNA) methods can detect transgenes of genetically modified (GM) animals from terrestrial and aquatic sources in invertebrate and vertebrate systems. We detected transgenic fragments between 82-234 bp through targeted PCR amplification of environmental DNA extracted from food media of GM fruit flies (Drosophila melanogaster), feces, urine, and saliva of GM laboratory mice (Mus musculus), and aquarium water of GM tetra fish (Gymnocorymbus ternetzi). With rapidly growing accessibility of genome-editing technologies such as CRISPR, the prevalence and diversity of GM animals will increase dramatically. GM animals have already been released into the wild with more releases planned in the future. eDNA methods have the potential to address the critical need for sensitive, accurate, and cost-effective detection and monitoring of GM animals and their transgenes in nature.


Subject(s)
Animals, Genetically Modified/genetics , DNA, Environmental/genetics , Transgenes/genetics , Animals , Characidae/genetics , Drosophila melanogaster/genetics , Environmental Monitoring/methods , Mice/genetics
13.
Ecol Appl ; 31(7): e02423, 2021 10.
Article in English | MEDLINE | ID: mdl-34288209

ABSTRACT

Anthropogenic environmental change is causing habitat deterioration at unprecedented rates in freshwater ecosystems. Despite increasing more rapidly than many other agents of global change, synthetic chemical pollution-including agrochemicals such as pesticides-has received relatively little attention in freshwater community and ecosystem ecology. Determining the combined effects of multiple agrochemicals on complex biological systems remains a major challenge, requiring a cross-field integration of ecology and ecotoxicology. Using a large-scale array of experimental ponds, we investigated the response of zooplankton community properties (biomass, composition, and diversity metrics) to the individual and joint presence of three globally widespread agrochemicals: the herbicide glyphosate, the neonicotinoid insecticide imidacloprid, and nutrient fertilizers. We tracked temporal variation in zooplankton biomass and community structure along single and combined pesticide gradients (each spanning eight levels), under low (mesotrophic) and high (eutrophic) nutrient-enriched conditions, and quantified (1) response threshold concentrations, (2) agrochemical interactions, and (3) community resistance and recovery. We found that the biomass of major zooplankton groups differed in their sensitivity to pesticides: ≥0.3 mg/L glyphosate elicited long-lasting declines in rotifer communities, both pesticides impaired copepods (≥3 µg/L imidacloprid and ≥5.5 mg/L glyphosate), whereas some cladocerans were highly tolerant to pesticide contamination. Strong interactive effects of pesticides were only recorded in ponds treated with the combination of the highest doses. Overall, glyphosate was the most influential driver of aggregate community properties of zooplankton, with biomass and community structure responding rapidly but recovering unequally over time. Total community biomass showed little resistance when first exposed to glyphosate, but rapidly recovered and even increased with glyphosate concentration over time; in contrast, taxon richness decreased in more contaminated ponds but failed to recover. Our results indicate that the biomass of tolerant taxa compensated for the loss of sensitive species after the first exposure, conferring greater community resistance upon a subsequent contamination event; a case of pollution-induced community tolerance in freshwater animals. These findings suggest that zooplankton biomass may be more resilient to agrochemical pollution than community structure; yet all community properties measured in this study were affected at glyphosate concentrations below common water quality guidelines in North America.


Subject(s)
Water Pollutants, Chemical , Zooplankton , Agrochemicals , Animals , Biomass , Ecosystem , Fresh Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
14.
Mol Ecol ; 30(19): 4771-4788, 2021 10.
Article in English | MEDLINE | ID: mdl-34324752

ABSTRACT

Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 µg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.


Subject(s)
Aquatic Organisms , Fresh Water , Bacteria/genetics , Biodiversity , RNA, Ribosomal, 16S/genetics
15.
Genetics ; 217(1): 1-15, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33683369

ABSTRACT

Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24-35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.


Subject(s)
DNA Methylation , Polymorphism, Genetic , Quantitative Trait Loci , Smegmamorpha/genetics , Animals , CpG Islands , Ecotype , Epigenome , Hybridization, Genetic , Quantitative Trait, Heritable
16.
Mol Ecol ; 30(9): 2054-2064, 2021 05.
Article in English | MEDLINE | ID: mdl-33713378

ABSTRACT

Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.


Subject(s)
Smegmamorpha , Animals , Estuaries , Genomics , Seasons , Selection, Genetic , Smegmamorpha/genetics
17.
Nat Rev Genet ; 22(2): 89-105, 2021 02.
Article in English | MEDLINE | ID: mdl-33067582

ABSTRACT

The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.


Subject(s)
Biodiversity , Ecosystem , Genetic Variation , Animals , Environmental Health , Evolution, Molecular , Genetic Engineering , Humans
18.
Nat Ecol Evol ; 4(4): 578-588, 2020 04.
Article in English | MEDLINE | ID: mdl-32123321

ABSTRACT

Community rescue occurs when ecological or evolutionary processes restore positive growth in a highly stressful environment that was lethal to the community in its ancestral form, thus averting biomass collapse in a deteriorating environment. Laboratory evidence suggests that community rescue is most likely in high-biomass communities that have previously experienced moderate doses of sublethal stress. We assessed this result under more natural conditions, in a mesocosm experiment with phytoplankton communities exposed to the ubiquitous herbicide glyphosate. We tested whether community biomass and prior herbicide exposure would facilitate community rescue after severe contamination. We found that prior exposure to glyphosate was a very strong predictor of the rescue outcome, while high community biomass was not. Furthermore, although glyphosate had negative effects on diversity, it did not influence community composition significantly, suggesting a modest role for genus sorting in this rescue process. Our results expand the scope of community rescue theory to complex ecosystems and confirm that prior stress exposure is a key predictor of rescue.


Subject(s)
Herbicides , Water Pollutants, Chemical , Biomass , Ecosystem , Phytoplankton
19.
Heredity (Edinb) ; 124(1): 1-14, 2020 01.
Article in English | MEDLINE | ID: mdl-31399719

ABSTRACT

By combining well-established population genetic theory with high-throughput sequencing data from natural populations, major strides have recently been made in understanding how, why, and when vertebrate populations evolve crypsis. Here, we focus on background matching, a particular facet of crypsis that involves the ability of an organism to conceal itself through matching its color to the surrounding environment. While interesting in and of itself, the study of this phenotype has also provided fruitful population genetic insights into the interplay of strong positive selection with other evolutionary processes. Specifically, and predicated upon the findings of previous candidate gene association studies, a primary focus of this recent literature involves the realization that the inference of selection from DNA sequence data first requires a robust model of population demography in order to identify genomic regions which do not conform to neutral expectations. Moreover, these demographic estimates provide crucial information about the origin and timing of the onset of selective pressures associated with, for example, the colonization of a novel environment. Furthermore, such inference has revealed crypsis to be a particularly useful phenotype for investigating the interplay of migration and selection-with examples of gene flow constraining rates of adaptation, or alternatively providing the genetic variants that may ultimately sweep through the population. Here, we evaluate the underlying evidence, review the strengths and weaknesses of the many population genetic methodologies used in these studies, and discuss how these insights have aided our general understanding of the evolutionary process.


Subject(s)
Biological Evolution , Genetics, Population , Hares/genetics , Lizards/genetics , Peromyscus/genetics , Pigmentation/genetics , Adaptation, Physiological/genetics , Animals , Gene Flow , Phenotype , Selection, Genetic
20.
J Hered ; 111(1): 43-56, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31690947

ABSTRACT

The repeatability of adaptive radiation is expected to be scale-dependent, with determinism decreasing as greater spatial separation among "replicates" leads to their increased genetic and ecological independence. Threespine stickleback (Gasterosteus aculeatus) provide an opportunity to test whether this expectation holds for the early stages of adaptive radiation-their diversification in freshwater ecosystems has been replicated many times. To better understand the repeatability of that adaptive radiation, we examined the influence of geographic scale on levels of parallel evolution by quantifying phenotypic and genetic divergence between lake and stream stickleback pairs sampled at regional (Vancouver Island) and global (North America and Europe) scales. We measured phenotypes known to show lake-stream divergence and used reduced representation genome-wide sequencing to estimate genetic divergence. We assessed the scale dependence of parallel evolution by comparing effect sizes from multivariate models and also the direction and magnitude of lake-stream divergence vectors. At the phenotypic level, parallelism was greater at the regional than the global scale. At the genetic level, putative selected loci showed greater lake-stream parallelism at the regional than the global scale. Generally, the level of parallel evolution was low at both scales, except for some key univariate traits. Divergence vectors were often orthogonal, highlighting possible ecological and genetic constraints on parallel evolution at both scales. Overall, our results confirm that the repeatability of adaptive radiation decreases at increasing spatial scales. We suggest that greater environmental heterogeneity at larger scales imposes different selection regimes, thus generating lower repeatability of adaptive radiation at larger spatial scales.


Subject(s)
Adaptation, Biological , Genetic Speciation , Smegmamorpha/genetics , Animals , Ecosystem , Female , Gene-Environment Interaction , Lakes , Male , Models, Genetic , Phenotype , Phylogeography , Rivers , Selection, Genetic , Smegmamorpha/physiology , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...