Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine ; 21: 102039, 2019 10.
Article in English | MEDLINE | ID: mdl-31247310

ABSTRACT

Staphylococcus aureus osteomyelitis is a devasting disease that often leads to amputation. Recent findings have shown that S. aureus is capable of invading the osteocyte lacuno-canalicular network (OLCN) of cortical bone during chronic osteomyelitis. Normally a 1 µm non-motile cocci, S. aureus deforms smaller than 0.5 µm in the sub-micron channels of the OLCN. Here we present the µSiM-CA (Microfluidic - Silicon Membrane - Canalicular Array) as an in vitro screening platform for the genetic mechanisms of S. aureus invasion. The µSiM-CA platform features an ultrathin silicon membrane with defined pores that mimic the openings of canaliculi. While we anticipated that S. aureus lacking the accessory gene regulator (agr) quorum-sensing system would not be capable of invading the OLCN, we found no differences in propagation compared to wild type in the µSiM-CA. However the µSiM-CA proved predictive as we also found that the agr mutant strain invaded the OLCN of murine tibiae.


Subject(s)
Osteocytes/microbiology , Osteomyelitis/genetics , Staphylococcal Infections/genetics , Staphylococcus aureus/pathogenicity , Animals , Cortical Bone/microbiology , Cortical Bone/pathology , Humans , Mice , Osteocytes/pathology , Osteomyelitis/microbiology , Osteomyelitis/pathology , Quorum Sensing/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...