Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 96(3): 325-30, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16953274

ABSTRACT

In this study, the in-vitro fibrinolytic efficacy of Tenecteplase, Amediplase and scu-PA was investigated in different external lysis models by measuring the lysis of human plasma clots after the addition of the plasminogen activators (PAs) to the surrounding plasma. The effect of TAFI was examined for each PA by neutralising TAFIa with potato carboxypeptidase inhibitor (PCI). The lytic efficacy of Amediplase was lower than that of Tenecteplase at low PA concentrations but slightly higher at therapeutic concentrations. The activity of scu-PA was clearly lower than that of either Tenecteplase or Amediplase. The TAFI system inhibited external clot lysis mediated by all the PAs when thrombomodulin was present in the model. In the therapeutic range (5-10 mug/ml) however, the TAFIa effect was negligible for both Amediplase and Tenecteplase. At lower PA concentrations the effect of TAFI on Amediplase was slightly stronger than that on Tenecteplase. Under static conditions the lysis rates were lower than with stirring. The role of TAFI was similar under both conditions. In conclusion, at therapeutic concentrations Amediplase was slightly more active than Tenecteplase and scu-PA under all conditions used. Therefore, Amediplase might possibly be a more potent thrombolytic agent at these concentrations and increase the efficacy of thrombolysis. The potential of TAFI for inhibiting thrombolytic therapy is probably low. However in conditions where the local PA concentrations are sub-optimal TAFI might affect the lysis rate.


Subject(s)
Blood Coagulation Tests , Carboxypeptidase B2/pharmacology , Tissue Plasminogen Activator/pharmacology , Urokinase-Type Plasminogen Activator/metabolism , Blood Coagulation , Carboxypeptidases/antagonists & inhibitors , Fibrin/chemistry , Fibrinolytic Agents/pharmacology , Humans , Plasminogen Activators , Recombinant Proteins , Sensitivity and Specificity , Solanum tuberosum , Tenecteplase , Time Factors , Urokinase-Type Plasminogen Activator/pharmacology
2.
Thromb Haemost ; 91(1): 52-60, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14691568

ABSTRACT

Amediplase (K(2) tu-PA) is a hybrid plasminogen activator, consisting of the kringle 2 domain of alteplase and the protease domain of urokinase. The objective of this study was to determine the in vitro clot penetration of amediplase in relation to its fibrin binding and to compare the properties with those of alteplase. The clot lysis activity of amediplase in internal clot lysis models (both purified system and plasma system) was about 10 times less than that of alteplase. The clot lysis activity of amediplase in an external clot lysis model (plasma system) was similar to that of alteplase at therapeutic concentrations around 1 micro g/ml. The fibrin-clot binding properties of amediplase and alteplase were studied in a purified system as well as in a plasma system. In both systems amediplase bound to fibrin although to a significantly lower extent than alteplase. The binding of amediplase or alteplase did not increase during plasmin-mediated degradation of fibrin. The binding of amediplase was fully inhibited by epsilon-aminocaproic acid, indicating that the observed binding was specific and occurred via the lysine binding site in the kringle of amediplase. Clot penetration was studied during pressure-driven fluid permeation using syringes containing plasma clots. Amediplase was able to enter the clot without significant hindrance, while alteplase was concentrated on the top of the plasma clot and hardly entered into the inner parts of the clot. Diffusion-driven clot penetration was studied during clot lysis using confocal microscopy. Alteplase was detected on or close to the clot surface, while two-chain urokinase, which has no affinity to fibrin, was also detected deep inside the clot. Amediplase showed a penetration behaviour, which was distinct from that of alteplase and similar to that of two-chain urokinase. We concluded that the fibrin binding of amediplase is moderate and does not hinder clot penetration under permeation-driven or diffusion-driven transport conditions. Enhanced clot penetration, especially in large clots, could allow a more efficient lysis during thrombolytic therapy.


Subject(s)
Fibrin/chemistry , Plasminogen Activators/chemistry , Tissue Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Aminocaproic Acid/pharmacology , Blood Coagulation , Diffusion , Dose-Response Relationship, Drug , Endopeptidases/chemistry , Fibrinolysin/chemistry , Humans , Immunoenzyme Techniques , Microscopy, Confocal , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...