Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 60(25): G126-G131, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613201

ABSTRACT

Yttrium aluminum garnet (YAG) is a common host material for both bulk and single-crystal fiber lasers. With increasing interest in developing optical technologies in the short-wave infrared and mid-infrared wavelength range, YAG may be a potential supercontinuum medium for these applications. Here, we characterize femtosecond laser pumped supercontinuum generation with 1200-2000 nm pump wavelengths (λp) for undoped, single-crystal YAG fibers, which are representative of the normal, zero, and anomalous-dispersion regimes. Supercontinuum was observed over the spectral region of about 0.2 to 1.6λp. Z-scan measurements were also performed of bulk YAG, which revealed little dispersion of the nonlinear index of refraction (n2) in the region of interest. The measured values of n2 (∼1×10-6cm2/GW) indicate a regime in which the nonlinear length, LNL, is less than the dispersion length, LD, (LNL≪LD). We report intensity clamping of the generated filament in the normal group velocity dispersion (GVD) regime and an isolated anti-Stokes peak in the anomalous GVD regime, suggesting further consideration is needed to optimize supercontinuum generation in this fiber medium.

2.
ACS Nano ; 11(9): 9390-9396, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28850781

ABSTRACT

We have demonstrated that multiple functionalities of transition-metal dichalcogenide (TMDC) monolayers may be substantially improved by the intercalation of small cations (H+ or Li+) between the monolayers and underlying substrates. The functionalities include photoluminescence (PL) efficiency and catalytic activity. The improvement in PL efficiency may be up to orders of magnitude and can be mainly ascribed to two effects of the intercalated cations: p-doping to the monolayers and reducing the influence of substrates, but more studies are necessary to better understand the mechanism for the improvement in the catalytic functionality. The cation intercalation may be achieved by simply immersing substrate-supported monolayers into the solution of certain acids or salts. It is more difficult to intercalate under the monolayers interacting with substrates stronger, such as as-grown monolayers or the monolayers on 2D material substrates. This result presents a versatile strategy to simultaneously optimize multiple functionalities of TMDC monolayers.

3.
Nano Lett ; 14(1): 202-6, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24325650

ABSTRACT

Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...