Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Leuk Res Treatment ; 2012: 482905, 2012.
Article in English | MEDLINE | ID: mdl-23259068

ABSTRACT

Translation initiation and activity of eukaryotic initiation factor-alpha (eIF2α), the rate-limiting step of translation initiation, is often overactivated in malignant cells. Here, we investigated the regulation and role of eIF2α in acute promyelocytic (APL) and acute myeloid leukemia (AML) cells in response to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), the front-line therapies in APL. ATRA and ATO induce Ser-51 phosphorylation (inactivation) of eIF2α, through the induction of protein kinase C delta (PKCδ) and PKR, but not other eIF2α kinases, such as GCN2 and PERK in APL (NB4) and AML cells (HL60, U937, and THP-1). Inhibition of eIF2α reduced the expression of cellular proteins that are involved in apoptosis (DAP5/p97), cell cycle (p21Waf1/Cip1), differentiation (TG2) and induced those regulating proliferation (c-myc) and survival (p70S6K). PI3K/Akt/mTOR pathway is involved in regulation of eIF2α through PKCδ/PKR axis. PKCδ and p-eIF2α protein expression levels revealed a significant association between the reduced levels of PKCδ (P = 0.0378) and peIF2 (P = 0.0041) and relapses in AML patients (n = 47). In conclusion, our study provides the first evidence that PKCδ regulates/inhibits eIF2α through induction of PKR in AML cells and reveals a novel signaling mechanism regulating translation initiation.

2.
Autophagy ; 4(5): 669-79, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18424910

ABSTRACT

Apoptosis (programmed cell death type I) and autophagy (type II) are crucial mechanisms regulating cell death and homeostasis. The Bcl-2 proto-oncogene is overexpressed in 50-70% of breast cancers, potentially leading to resistance to chemotherapy, radiation and hormone therapy-induced apoptosis. Here, we investigated the role of Bcl-2 in autophagy in breast cancer cells. Silencing of Bcl-2 by siRNA in MCF-7 breast cancer cells downregulated Bcl-2 protein levels (>85%) and led to inhibition of cell growth (71%) colony formation (79%), and cell death (up to 55%) by autophagy but not apoptosis. Induction of autophagy was demonstrated by acridine orange staining, electron microscopy and an accumulation of GFP-LC3-II in autophagosomal membranes in MCF-7 cells transfected with GFP-LC-3(GFP-ATG8). Silencing of Bcl-2 by siRNA also led to induction of LC-3-II, a hallmark of autophagy, ATG5 and Beclin-1 autophagy promoting proteins. Knockdown of ATG5 significantly inhibited Bcl-2 siRNA-induced LC3-II expression, the number of GFP-LC3-II-labeled autophagosome positive cells and autophagic cell death (p < 0.05). Furthermore, doxorubicin at a high dose (IC(95), 1 microM) induced apoptosis but at a low dose (IC(50), 0.07 microM) induced only autophagy and Beclin-1 expression. When combined with Bcl-2 siRNA, doxorubicin (IC(50)) enhanced autophagy as indicated by the increased number cells with GFP-LC3-II-stained autophagosomes (punctuated pattern positive). These results provided the first evidence that targeted silencing of Bcl-2 induces autophagic cell death in MCF-7 breast cancer cells and that Bcl-2 siRNA may be used as a therapeutic strategy alone or in combination with chemotherapy in breast cancer cells that overexpress Bcl-2.


Subject(s)
Autophagy/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing/physiology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Interference/physiology , RNA, Small Interfering/physiology , Autophagy/physiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/genetics , Female , Growth Inhibitors/physiology , Humans , Proto-Oncogene Mas , Proto-Oncogene Proteins c-bcl-2/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL