Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(4): e0195714, 2018.
Article in English | MEDLINE | ID: mdl-29698404

ABSTRACT

We propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count. Unsupervised clustering of individual trajectories generates mobility profiles (clusters of similar individual trajectories) which characterize relevant group behaviors preserving optimal aggregation levels for detailed and privacy-secured mobility characterization. The application of the proposed framework is illustrated by analyzing fully anonymized data on human mobility from mobile phones in Senegal at the arrondissement level over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolution resulted in the discovery and characterization of seasonal mobility profiles related with economic activities, agricultural calendars and rainfalls. The use of these mobility profiles could support the timely identification of mobility changes in vulnerable populations in response to external shocks (such as natural disasters, civil conflicts or sudden increases of food prices) to monitor food security.


Subject(s)
Cell Phone/statistics & numerical data , Food Supply , Human Migration/statistics & numerical data , Data Anonymization , Data Interpretation, Statistical , Emigration and Immigration/statistics & numerical data , Employment/statistics & numerical data , Feasibility Studies , Food Supply/statistics & numerical data , Humans , Seasons
2.
Entropy (Basel) ; 20(9)2018 Sep 07.
Article in English | MEDLINE | ID: mdl-33265770

ABSTRACT

Time evolving Random Network Models are presented as a mathematical framework for modelling and analyzing the evolution of complex networks. This framework allows the analysis over time of several network characterizing features such as link density, clustering coefficient, degree distribution, as well as entropy-based complexity measures, providing new insight on the evolution of random networks. First, some simple dynamic network models, based only on edge density, are analyzed to serve as a baseline reference for assessing more complex models. Then, a model that depends on network structure with the aim of reflecting some characteristics of real networks is also analyzed. Such model shows a more sophisticated behavior with two different regimes, one of them leading to the generation of high clustering coefficient/link density ratio values when compared with the baseline values, as it happens in many real networks. Simulation examples are discussed to illustrate the behavior of the proposed models.

SELECTION OF CITATIONS
SEARCH DETAIL
...