Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928411

ABSTRACT

This study aimed to investigate the gut microbiota composition in children with autism spectrum disorder (ASD) compared to neurotypical (NT) children, with a focus on identifying potential differences in gut bacteria between these groups. The microbiota was analyzed through the massive sequencing of region V3-V4 of the 16S RNA gene, utilizing DNA extracted from stool samples of participants. Our findings revealed no significant differences in the dominant bacterial phyla (Firmicutes, Bacteroidota, Actinobacteria, Proteobacteria, Verrucomicrobiota) between the ASD and NT groups. However, at the genus level, notable disparities were observed in the abundance of Blautia, Prevotella, Clostridium XI, and Clostridium XVIII, all of which have been previously associated with ASD. Furthermore, a sex-based analysis unveiled additional discrepancies in gut microbiota composition. Specifically, three genera (Megamonas, Oscilibacter, Acidaminococcus) exhibited variations between male and female groups in both ASD and NT cohorts. Particularly noteworthy was the exclusive presence of Megamonas in females with ASD. Analysis of predicted metabolic pathways suggested an enrichment of pathways related to amine and polyamine degradation, as well as amino acid degradation in the ASD group. Conversely, pathways implicated in carbohydrate biosynthesis, degradation, and fermentation were found to be underrepresented. Despite the limitations of our study, including a relatively small sample size (30 ASD and 31 NT children) and the utilization of predicted metabolic pathways derived from 16S RNA gene analysis rather than metagenome sequencing, our findings contribute to the growing body of evidence suggesting a potential association between gut microbiota composition and ASD. Future research endeavors should focus on validating these findings with larger sample sizes and exploring the functional significance of these microbial differences in ASD. Additionally, there is a critical need for further investigations to elucidate sex differences in gut microbiota composition and their potential implications for ASD pathology and treatment.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Autism Spectrum Disorder/microbiology , Autism Spectrum Disorder/metabolism , Female , Male , Child , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Feces/microbiology , Child, Preschool , Sex Factors , Sex Characteristics , Metabolic Networks and Pathways
2.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793571

ABSTRACT

The COVID-19 pandemic has resulted in millions of fatalities worldwide. The case of pediatric cancer patients stands out since, despite being considered a population at risk, few studies have been carried out concerning symptom detection or the description of the mechanisms capable of modifying the course of the COVID-19 disease, such as the interaction and response between the virus and the treatment given to cancer patients. By synthesizing existing studies, this paper aims to expose the treatment challenges for pediatric patients with COVID-19 in an oncology context. Additionally, this updated review includes studies that utilized the antiviral agents Remdesivir and PaxlovidTM in pediatric cancer patients. There is no specific treatment designed exclusively for pediatric cancer patients dealing with COVID-19, and it is advisable to avoid self-medication to prevent potential side effects. Managing COVID-19 in pediatric cancer patients is indeed a substantial challenge. New strategies, such as chemotherapy application rooms, have been implemented for children with cancer who were positive for COVID-19 but asymptomatic since the risk of disease progression is greater than the risk of complications from SARS-CoV-2.


Subject(s)
Alanine , Antiviral Agents , COVID-19 , Neoplasms , SARS-CoV-2 , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/complications , COVID-19/epidemiology , Child , Antiviral Agents/therapeutic use , SARS-CoV-2/drug effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , COVID-19 Drug Treatment , Pandemics
3.
Cytogenet Genome Res ; 158(1): 10-16, 2019.
Article in English | MEDLINE | ID: mdl-30974435

ABSTRACT

The IKZF1 gene is formed by 8 exons and encodes IKAROS, a transcription factor that regulates the expression of genes that control cell cycle progression and cell survival. In general, 15-20% of the patients with preB acute lymphoblastic leukemia (preB ALL) harbor IKZF1 deletions, and the frequency of these deletions increases in BCR-ABL1 or Ph-like subgroups. These deletions have been associated with poor treatment response and the risk of relapse. The aim of this descriptive study was to determine the frequency of IKZF1 deletions and the success of an induction therapy response in Mexican pediatric patients diagnosed with preB ALL in 2 hospitals from 2017 to August 2018. Thirty-six bone marrow samples from patients at the Instituto Nacional de Pediatría in Mexico City and the Centro Estatal de Cancerología in Tepic were analyzed. The IKZF1 deletion was identified by MLPA using the SALSA MLPA P335 ALL-IKZF1 probemix. Deletions of at least 1 IKZF1 exon were observed in 7/34 samples (20.6%): 3 with 1 exon deleted; 1 with 2 exons, 1 with 5 exons, 1 with 6 exons, and 1 patient with a complete IKZF1 deletion. This study was descriptive in nature; we calculated the frequency of the IKZF1 gene deletion in a Mexican pediatric population with preB ALL as 20.6%.


Subject(s)
Ikaros Transcription Factor/genetics , Neoplasm Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Marrow/chemistry , Bone Marrow/pathology , Child , Child, Preschool , Exons/genetics , Female , Gene Frequency , Genes, Neoplasm , Genetic Predisposition to Disease , Humans , Infant , Infant, Newborn , Male , Mexico , Multilocus Sequence Typing , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/ethnology , Remission Induction , Sequence Deletion , Treatment Outcome
4.
Gynecol Endocrinol ; 35(9): 772-776, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30887870

ABSTRACT

Turner syndrome (TS) is a common genetic disorder. TS-phenotype includes short stature, gonadal dysgenesis, cardiac and kidney malformations, low bone mineral density (low-BMD) and thyroiditis. TS-phenotype varies from patient to patient and the cause is not clear, the genomic background may be an important contributor for this variability. Our aim was to identify the association of specific single nucleotide variants in the PTPN22, VDR, KL, and CYP27B1 genes and vitamin D-metabolism, heart malformation, renal malformation, thyroiditis, and low-BMD in 61 Mexican TS-patients. DNA samples were genotyped for SNVs: rs7975232 (VDR), rs9536282 (KL), rs4646536 (CYP27B1), and rs1599971 (PTPN22) using the KASP assay. Chi-square test under a recessive model and multifactorial dimensionality reduction method were used for analysis. We found a significant association between renal malformation and the rs9536282 (KL) variant and between rs4646536 (CYP27B1) and low-BMD, these variants may have modest effects on these characteristics but contribute to the variability of the TS phenotype. In addition, we identified gene-gene interactions between variants in genes KL, CYP27B1 and VDR related to vitamin D-metabolism and low-BMD in TS-patients. Our results support the idea that the genetic background of TS-patients contributes to the clinical variability seen in them.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Bone Diseases, Metabolic/genetics , Glucuronidase/genetics , Receptors, Calcitriol/genetics , Turner Syndrome/genetics , Urogenital Abnormalities/genetics , Adolescent , Adult , Bone Density/genetics , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/epidemiology , Case-Control Studies , Child , Child, Preschool , Epistasis, Genetic , Female , Gene Frequency , Genetic Association Studies , Humans , Infant , Kidney/abnormalities , Klotho Proteins , Metabolic Networks and Pathways/genetics , Mexico/epidemiology , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Receptors, Calcitriol/metabolism , Turner Syndrome/complications , Turner Syndrome/epidemiology , Urogenital Abnormalities/complications , Urogenital Abnormalities/epidemiology , Vitamin D/metabolism , Young Adult
5.
J Child Neurol ; 25(8): 1034-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20350966

ABSTRACT

Pompe disease or glycogen-storage disease type 2 (GSD2, OMIM 232300) is an autosomal recessive disorder caused by mutations in the acid alpha-glucosidase gene. Late-onset GSD2 resembles some limb-girdle and Becker muscular dystrophies. The screening of GSD2 through the measurement of acid alpha-glucosidase activity in dried blood spots was applied to a selected sample of 5 Mexican patients with proximal myopathies of unknown etiology. Only 1 male patient showed a low level of acid alpha-glucosidase activity and a compound heterozygote genotype for the c.-32-13T>G splicing mutation present in most white late-onset Pompe disease cases and the novel mutation p.C558S. To our knowledge, this is the first report of a Mexican patient with late-onset GSD2. The identification of c.-32-13T>G in our patient could reflect the genetic contribution of European ancestry to the Mexican population. The enzymatic screening of GSD2 could be justified in patients with myopathies of unknown etiology.


Subject(s)
Glycogen Storage Disease Type II/enzymology , Glycogen Storage Disease Type II/genetics , Muscular Diseases/enzymology , Muscular Diseases/genetics , Mutation/genetics , alpha-Glucosidases/genetics , Adolescent , Age of Onset , Female , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Genotype , Glycogen Storage Disease Type II/physiopathology , Humans , Male , Mexico/ethnology , Muscular Diseases/physiopathology , White People/ethnology , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL