Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theriogenology ; 86(4): 1111-1131, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27207472

ABSTRACT

Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45% < PRC less than 55%; or subfertile, that is, PRC less than 45%. Linear regression using another combination of 20 variables, including motility, viability, oxidation level, acrosome integrity, DNA integrity, and hypoosmotic resistance, accounted for 94.2% of the variability regarding fertility and was used to calculate a prediction of the PRC with a mean standard deviation of 3.1. The difference between the observed fertility and the calculated value ranged from -4.2 to 5.0. In conclusion, this study enabled to determine a new protocol for the evaluation of stallion semen, combining microscopical observation, computer-assisted motility analysis and flow cytometry, and providing a high level of fertility prediction.


Subject(s)
Fertility/physiology , Flow Cytometry/veterinary , Horses/physiology , Semen Analysis/veterinary , Semen/cytology , Spermatozoa/physiology , Animals , Cell Membrane , Cell Survival , DNA Damage , Female , Male , Pregnancy , Sperm Motility/physiology
2.
Vet Immunol Immunopathol ; 157(3-4): 164-74, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24445196

ABSTRACT

Rhodococcus equi is the most common infectious cause of mortality in foals between 1 and 6 months of age. Because of an increase in the number of antibiotic-resistant strains, the optimization of a prophylactic strategy is a key factor in the comprehensive management of R. equi pneumonia. The objectives of this study were to assess the safety and immunogenicity of R. equi-secreted proteins (ReSP) co-administered with either the nanoparticular adjuvant Montanide™ IMS 3012 VG, or a new polymeric adjuvant Montanide™ PET GEL A, and to further investigate the most immunogenic proteins for subsequent immunization/challenge experiments in the development of a vaccine against rhodoccocal pneumonia. The approach involved two phases. The first phase aimed to investigate the safety of vaccination in six adult horses. The second phase aimed to determine the safety and immunogenicity of vaccination in twelve 3-week-old foals. We set out to develop a method based on ultrasound measurements for safety assessment in adult horses in order to evaluate any in situ changes at the injection site, in the skin or the underlying muscle, with quantitative and qualitative data revealing that administration of ReSP combined with the Pet Gel A adjuvant led to an increase in local inflammation, associated with 4- to 7-fold higher levels of anti-R. equi IgGa, IgGb and IgGT, compared to administration of ReSP associated with IMS 3012 adjuvant, but without any impact on animal demeanor. Investigations were then performed in foals with serological and clinical follow-up until 6 months of age. Interestingly, we observed in foals a much lower incidence of adverse local tissue reactions at the injection site than in adult horses, with transient and moderate swelling for the group that received ReSP combined with Pet Gel A. Immunized foals with Pet Gel A adjuvant exhibited a similar response in both IgGa and IgGT levels, but a lower response in IgGb levels, compared to adult horses, with a subisotype profile that may however reflect a bias favorable to R. equi resistance. From the crude extract of secreted proteins, dot-blot screening enabled identification of cholesterol oxidase, mycolyl transferase 3, and PSP (probable secreted protein) as the most immunogenic candidates. Taken together, these results are encouraging in developing a vaccine for foals.


Subject(s)
Bacterial Proteins/immunology , Bacterial Vaccines/immunology , Rhodococcus equi/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Bacterial Vaccines/adverse effects , Horses , Immunoglobulin G/blood , Immunoglobulin G/classification , Nanoparticles/administration & dosage , Polymers/administration & dosage
3.
Reprod Domest Anim ; 48(1): 64-71, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22524671

ABSTRACT

Fertility is reduced after semen cooling for a considerable number of stallions. The main hypotheses include alterations in plasma membrane following cooling and deleterious influence of seminal plasma. However, interindividual variability is controversial. We hypothesized that the removal of seminal plasma could enhance motility in some 'poor cooler' stallions, but could also affect, negatively or positively, membrane quality in some stallions. This study examined the effect of centrifugation, followed or not by removal of seminal plasma, on parameters indicating semen quality after 48 h at 4 °C: motility, plasma membrane integrity as evaluated by hypo-osmotic swelling test, acrosome integrity and response to a pharmacological induction of acrosome reaction using ionophore A23187. Sixty-six ejaculates from 14 stallions were used, including stallions showing high or low sperm motility after cooled storage. Centrifugation without removal of seminal plasma did not affect sperm parameters. Removal of seminal plasma did not affect motility, but significantly stabilized sperm membranes, as demonstrated by a higher response to the osmotic challenge, and a reduced reactivity of the acrosome. Moreover, for the same semen sample, the response to an induction of acrosome reaction was significantly higher when the induction was performed in the presence of seminal plasma, compared with the induction in the absence of seminal plasma. This was observed both for fresh and cooled semen. When the induction of acrosome reaction with ionophore A23187 is used to evaluate sperm quality, care must therefore be taken to standardize the proportion of seminal plasma between samples. For the 10 stallions serving at least 25 mares, the only variable significantly correlated with fertility was motility. The influence of membrane stabilization regarding fertility requires further investigations.


Subject(s)
Cell Membrane/physiology , Horses/physiology , Semen Preservation/veterinary , Semen/physiology , Spermatozoa/physiology , Acrosome Reaction/drug effects , Animals , Calcimycin/pharmacology , Centrifugation , Cold Temperature , Male , Semen Preservation/methods , Sperm Motility , Spermatozoa/cytology , Spermatozoa/drug effects
5.
Theriogenology ; 55(8): 1679-95, 2001 May 01.
Article in English | MEDLINE | ID: mdl-11393219

ABSTRACT

Inducing ovulation in a cyclic mare is often necessary. For this purpose, hCG has been used commonly, but the response can be reduced after successive administrations. The aims of this study were to test the effectiveness of buserelin in hastening ovulation in estrus mares, and its influence on fertility; and to investigate the effect of treatment on LH secretion. Five crossover trials were designed to compare the effect of two treatments: buserelin (40 microg in 4 doses i.v. at 12 h intervals) vs placebo (Experiments 1 and 2); buserelin 40 microg (in 4 doses i.v.) vs 20 microg (Experiment 3); buserelin (4 doses of 20 microg i.v.) vs hCG (1 dose of 2,500 IU i.v.) (Experiment 4); or buserelin (3 doses of 13.3 microg at 6 h interval) vs hCG (Experiment 5). In Experiment 2, blood samples were taken hourly until ovulation, for LH measurements. In Experiment 1, buserelin treatment significantly hastened ovulation. Reduction of the dose by half (Experiment 3) did not alter the effectiveness. In Experiments 4 and 5, buserelin was as effective as hCG in inducing ovulation between 24 and 48 h after initiation of treatment. Buserelin treatment induced a rise in LH concentration during the 48 h period of the experiment, and LH concentrations before ovulation were significantly higher in buserelin treated cycles than in placebo cycles. These experiments demonstrated the usefulness of two new protocols of administration of buserelin, as an alternative to hCG for induction of ovulation. One hypothesis explaining the mechanism of action is that the persistant rise in LH concentration could modify the ratio of biological/immunological LH, as it occurs physiologically, thereby hastening ovulation.


Subject(s)
Breeding/methods , Buserelin/pharmacology , Fertility Agents, Female/pharmacology , Horses/physiology , Ovulation Induction/methods , Animals , Buserelin/administration & dosage , Chorionic Gonadotropin/pharmacology , Cross-Over Studies , Drug Administration Schedule/veterinary , Female , Fertility Agents, Female/administration & dosage , Luteinizing Hormone/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...