Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 2(3): 440-6, 2012 Sep 27.
Article in English | MEDLINE | ID: mdl-22921399

ABSTRACT

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been shown to differentiate into primordial germ cells (PGCs) but not into spermatogonia, haploid spermatocytes, or spermatids. Here, we show that hESCs and hiPSCs differentiate directly into advanced male germ cell lineages, including postmeiotic, spermatid-like cells, in vitro without genetic manipulation. Furthermore, our procedure mirrors spermatogenesis in vivo by differentiating PSCs into UTF1-, PLZF-, and CDH1-positive spermatogonia-like cells; HIWI- and HILI-positive spermatocyte-like cells; and haploid cells expressing acrosin, transition protein 1, and protamine 1 (proteins that are uniquely found in spermatids and/or sperm). These spermatids show uniparental genomic imprints similar to those of human sperm on two loci: H19 and IGF2. These results demonstrate that male PSCs have the ability to differentiate directly into advanced germ cell lineages and may represent a novel strategy for studying spermatogenesis in vitro.


Subject(s)
Cell Differentiation/physiology , Haploidy , Pluripotent Stem Cells/metabolism , Spermatids/metabolism , Spermatocytes/metabolism , Spermatogenesis/physiology , Animals , Cell Line , Humans , Male , Mice , Pluripotent Stem Cells/cytology , Spermatids/cytology , Spermatocytes/cytology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...