Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904334

ABSTRACT

A new phosphate-containing bio-polyester based on glycerol and citric acid was synthesized and evaluated as fire-retardant (FR) in wooden particleboards. Phosphorus pentoxide was used to first introduce phosphate esters in the glycerol followed by esterification with citric acid to produce the bio-polyester. The phosphorylated products were characterized by ATR-FTIR, 1H-NMR and TGA-FTIR. After polyester curing, they were grinded and incorporated in laboratory produced particleboards. The fire reaction performance of the boards was evaluated by cone calorimeter. An increased char residue was produced depending on the phosphorus content and the THR (Total Heat Release), PHRR (Peak of Heat Release Rate) and MAHRE (Maximum Average of the Rate of Heat Emission) were considerably reduced in presence of the FRs. Highlights: Phosphate containing bio-polyester as fire retardant in wooden particle board; Fire performance is improved; Bio-polyester acts in the condensed and gas phases; Additive effectiveness similar to ammonium polyphosphate.

2.
ACS Appl Mater Interfaces ; 7(14): 7801-8, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25811538

ABSTRACT

Na2Ti3O7 is considered a promising negative electrode for Na-ion batteries; however, poor capacity retention has been reported and the stability of the solid-electrolyte interphase (SEI) could be one of the main actors of this underperformance. The composition and evolution of the SEI in Na2Ti3O7 electrodes is hereby studied by means of X-ray photoelectron spectroscopy (XPS). To overcome typical XPS limitations in the photoelectron energy assignments, the analysis of the Auger parameter is here proposed for the first time in battery materials characterization. We have found that the electrode/electrolyte interface formed upon discharge, mostly composed by carbonates and semicarbonates (Na2CO3, NaCO3R), fluorides (NaF), chlorides (NaCl) and poly(ethylene oxide)s, is unstable upon electrochemical cycling. Additionally, solid state nuclear magnetic resonance (NMR) studies prove the reaction of the polyvinylidene difluoride (PVdF) binder with sodium. The powerful approach used in this work, namely Auger parameter study, enables us to correctly determine the composition of the electrode surface layer without any interference from surface charging or absolute binding energy calibration effects. As a result, the suitability for Na-ion batteries of binders and electrolytes widely used for Li-ion batteries is questioned here.

3.
Phys Chem Chem Phys ; 17(10): 6988-94, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25683725

ABSTRACT

H2Ti3O7 was prepared as a single phase material by ionic exchange from Na2Ti3O7. The complete ionic exchange was confirmed by (1)H and (23)Na solid state Nuclear Magnetic Resonance (NMR). The atomic positions of H2Ti3O7 were obtained from the Rietveld refinement of powder X-ray diffraction (PXRD) and neutron diffraction experimental data, the latter collected at two different wavelengths to precisely determine the hydrogen atomic positions in the structure. All H(+) cations are hydrogen bonded to two adjacent [Ti3O7](2-) layers leading to the gliding of the layers and lattice centring with respect to the parent Na2Ti3O7. In contrast with a previous report where protons were located in two different positions of H2Ti3O7, 3 types of proton positions were found. Two of the three types of proton are bonded to the only oxygen linked to a single titanium atom forming an H-O-H angle close to that of the water molecule. H2Ti3O7 is able to electrochemically insert Na(+). The electrochemical insertion of sodium into H2Ti3O7 starts with a solid solution regime of the C-centred phase. Then, between 0.6 and 1.2 inserted Na(+) the reaction proceeds through a two phase reaction and a plateau at 1.3 V vs. Na(+)/Na is observed in the voltage-composition curve. The second phase resembles the primitive Na2Ti3O7 cell as detected by in situ PXRD. Upon oxidation, from 0.9 to 2.2 V, the PXRD pattern remains mostly unchanged probably due to H(+) removal instead of Na(+), with the capacity quickly fading upon cycling. Conditioning H2Ti3O7 for two cycles at 0.9-2.2 V before cycling in the 0.05-1.6 V range yields similar specific capacity and better retention than the original Na2Ti3O7 in the same voltage range.

4.
J Org Chem ; 74(16): 6323-6, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19601580

ABSTRACT

A highly functionalyzed furanose derivative, accessible in five steps from D-mannose, comprising a halo-alkenyl allylic-oxirane system, undergoes a palladium catalyzed one-pot, three component, assembly with boronic acids (or alkyl boranes) and amines to give, in a complete regio- and stereocontrolled manner, a sugar based derivative with two sites of molecular diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...