Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 269: 125405, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37984235

ABSTRACT

In this work we describe a highly sensitive method based on a biocatalyzed electrochemiluminescence approach. The system combines, for the first time, the use of few-layer bismuthene (FLB) as a platform for the oriented immobilization of tetrahedral DNA nanostructures (TDNs) specifically designed and synthetized to detect a specific SARS-CoV-2 gene sequence. In one of its vertices, these TDNs contain a DNA capture probe of the open reading frame 1 ab (ORF1ab) of the virus, available for the biorecognition of the target DNA/RNA. At the other three vertices, there are thiol groups that enable the stable anchoring/binding to the FLB surface. This novel geometry/approach enables not only the binding of the TDNs to surfaces, but also the orientation of the capture probe in a direction normal to the bismuthine surface so that it is readily accessible for binding/recognition of the specific SARS-CoV-2 sequence. The analytical signal is based on the anodic electrochemiluminescence (ECL) intensity of luminol which, in turn, arises as a result of the reaction with H2O2, generated by the enzymatic reaction of glucose oxidation, catalyzed by the biocatalytic label avidin-glucose oxidase conjugate (Av-GOx), which acts as co-reactant in the electrochemiluminescent reaction. The method exhibits a limit of detection (LOD) of 4.31 aM and a wide linear range from 14.4 aM to 1.00 µM, and its applicability was confirmed by detecting SARS-CoV-2 in nasopharyngeal samples from COVID-19 patients without the need of any amplification process.


Subject(s)
Biosensing Techniques , Nanostructures , Humans , Hydrogen Peroxide/chemistry , Biosensing Techniques/methods , DNA/genetics , DNA/chemistry , Nanostructures/chemistry , Limit of Detection , DNA Probes , Polymerase Chain Reaction , Luminescent Measurements/methods , Electrochemical Techniques/methods
2.
J Am Chem Soc ; 145(36): 20021-20030, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37657413

ABSTRACT

The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis, but these effects are often difficult to rationalize. The NiFe hydrogenases 1 and 2 (Hyd 1 and Hyd 2) from E. coli both consist of a large catalytic subunit that embeds the same dinuclear active site and a small electron-transfer subunit with a chain of three FeS clusters. Hyd 1 is mostly active in H2 oxidation and resistant to inhibitors, whereas Hyd 2 also catalyzes H2 production and is strongly inhibited by O2 and CO. Based on structural and site-directed mutagenesis data, it is currently believed that the catalytic bias and tolerance to O2 of Hyd 1 are defined by the distal and proximal FeS clusters, respectively. To test these hypotheses, we produced and characterized a hybrid enzyme made of the catalytic subunit of Hyd 1 and the electron transfer subunit of Hyd 2. We conclude that catalytic bias and sensitivity to CO are set by the catalytic subunit rather than by the electron transfer chain. We confirm the importance of the proximal cluster in making the enzyme Hyd 1 resist long-term exposure to O2, but we show that other structural determinants, in both subunits, contribute to O2 tolerance. A similar strategy based on the design of chimeric heterodimers could be used in the future to elucidate various structure-function relationships in hydrogenases and other multimeric metalloenzymes and to engineer useful hydrogenases that combine the desirable properties of distinct, homologous enzymes.


Subject(s)
Electrons , Escherichia coli , Escherichia coli/genetics , Catalysis , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...