Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Braz J Biol ; 70(2): 425-34, 2010 May.
Article in English | MEDLINE | ID: mdl-20549070

ABSTRACT

In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 degrees C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.


Subject(s)
Hypoxia/physiopathology , Oxygen Consumption/physiology , Zebrafish/physiology , Aerobiosis/physiology , Anaerobiosis/physiology , Animals , Body Mass Index , Heart Rate/physiology , Hypoxia/metabolism , Lactic Acid/analysis , Zebrafish/growth & development , Zebrafish/metabolism
3.
Am J Physiol ; 276(2): R505-13, 1999 02.
Article in English | MEDLINE | ID: mdl-9950931

ABSTRACT

Body mass, length, oxygen consumption (MO2) and heart rate (fH) were measured in "embryos" (prior to hatching), "larvae" (days 10-20), "juveniles" (days 30-70 in 10-day intervals), and "adults" (day 100) of the zebrafish Danio rerio. Fish were chronically reared at either 25, 28, or 31 degreesC and then acutely exposed to hypoxia at different developmental stages. We hypothesized that at any given rearing and measurement temperature, D. rerio would maintain MO2 at lower ambient PO2 [i.e., have a lower critical partial pressure (Pcrit)] as development progressed and that at any given developmental stage individuals reared and measured at higher temperatures would show a more pronounced hypoxic bradycardia. MO2 in normoxic fish at 28 degreesC peaked at approximately 40 micromol. g-1. h-1 at day 10, thereafter falling to 4-5 micromol. g-1. h-1 at day 100. The Q10 for MO2 was 4-5 in embryos, falling to 2-3 from day 10 to day 60 and rising again to 4-5 at day 100. Pcrit at 28 degreesC was approximately 80 mmHg in embryos but decreased sharply to 20 mmHg at 100 days, supporting the hypothesis that more mature fish would be better able to oxygen regulate to lower ambient PO2 levels. Pcrit increased sharply with measurement temperature. Heart rate (fH) at 28 degreesC increased from about 125 beats/min in embryos to a peak of approximately 175 beats/min at days 10-30 and then fell to approximately 130 beats/min by day 100. Unlike for MO2, the Q10 for fH was more constant at 1.2-2.5 throughout development. Hypoxic exposure at any temperature had no effect on fH until approximately day 30, after which time a hypoxic bradycardia was evident. As evident for MO2, the bradycardia in older larvae was more profound at higher temperatures. On the assumption that bradycardia is indicative of hypoxic stress, the increasing prevalence of a hypoxic bradycardia in older, warmer individuals supports the hypothesis that increasing hypoxic susceptibility with development would be exacerbated by increasing temperature. Collectively, these data indicate that the ability to regulate MO2 and fH in response to the compounding demands of increased temperature and/or decreased oxygen availability first develops after approximately 20 days in D. rerio and, thereafter, the ability to maintain MO2 in the face of ambient hypoxia progressively builds through to adulthood. Additionally, the temperature responses of metabolism and heart rate differ substantially at different phases of development, suggesting a loose coupling between the respiratory and cardiovascular systems, at least early in development.


Subject(s)
Aging/physiology , Heart Rate/physiology , Oxygen Consumption/physiology , Zebrafish/growth & development , Zebrafish/physiology , Anaerobiosis , Animals , Body Weight , Environment , Heart Rate/drug effects , Larva/physiology , Oxygen/pharmacology , Oxygen Consumption/drug effects , Temperature , Zebrafish/anatomy & histology , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...