Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 33(4-5): 325-396, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683471

ABSTRACT

An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.


Subject(s)
Biological Monitoring , Environmental Monitoring , Mercury , Mercury/analysis , Biological Monitoring/methods , Animals , Environmental Monitoring/methods , Biota , Water Pollutants, Chemical/analysis , Birds , Methylmercury Compounds/analysis , Fishes/metabolism
2.
Mar Pollut Bull ; 200: 116085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325203

ABSTRACT

The use of sentinel species in monitoring programs for toxic metals such as mercury (Hg) is essential to understand these pollutants' impact on the environment. For this purpose, it is essential to use organisms that have a lifespan compatible with the residence time of Hg in the oceans, and preferably with a wide geographical distribution, such as sea turtles. Here, we assess the regional variability of Hg concentrations using carapace scutes of four sea turtle species along the foraging and spawning area in the northeast coastline of Brazil. Mercury concentrations in samples showed no relationship with the environmental Hg levels (obtained from literature). Rather, Hg concentrations varied according to species-specific biological, and ecological traits. Characteristics such as the ontogenetic shift in the diet of Chelonia mydas, capital breeding in females, depth of foraging in oceanic waters, and selectivity of food items, such as in Eretmochelys imbricata, significantly influenced Hg concentrations.


Subject(s)
Environmental Pollutants , Mercury , Turtles , Water Pollutants, Chemical , Animals , Female , Mercury/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis
3.
Bull Environ Contam Toxicol ; 110(6): 99, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243788

ABSTRACT

Scutes present very complex morphologies with different growth rates at different areas of the carapace that can change the accumulation process of essential and non-essential metals. To infer the effects of morphology and growth on Hg concentrations in scutes, we mapped them in the carapace of one individual of four species of sea turtles sampled along the Brazilian coast. The results showed that Hg concentrations were higher in the vertebral scutes of Chelonia mydas and Eretmochelys imbricata suggesting variation in growth rates of different carapace areas since the vertebral area is the first to develop prior to costal areas. Caretta caretta and Lepidochelys olivacea did not show differences between carapace areas. The preliminary data from this pilot study indicate that vertebral scutes may be suitable for monitoring Hg in C. mydas and E. imbricata, since they reflect longer exposure period. A species-to-species comparison of Hg concentrations is not possible due to the small number of sampled individuals, nevertheless, E. imbricata showed remarkably lower Hg concentrations compared to the other three species. Further studies are required for all four species, with a larger number of individuals, preferentially of varying life stages, due to the unknown effects of different diets, Hg exposure, and migration histories.


Subject(s)
Mercury , Turtles , Animals , Mercury/analysis , Brazil , Pilot Projects , Animal Shells/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...