Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 19(24)2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31861184

ABSTRACT

Since Bevis first proposed Global Positioning System (GPS) meteorology in 1992, the precipitable water (PW) estimates retrieved from Global Navigation Satellite System (GNSS) networks with high accuracy have been widely used in many meteorological applications. The proper estimation of GNSS PW can be affected by the GNSS processing strategy as well as the local geographical properties of GNSS sites. To better understand the impact of these factors, we compare PW estimates from two nearby permanent GPS stations (THTI and FAA1) in the tropical Tahiti Island, a basalt shield volcano located in the South Pacific, with a mean slope of 8% and a diameter of 30 km. The altitude difference between the two stations is 86.14 m, and their horizontal distance difference is 2.56 km. In this paper, Bernese GNSS Software Version 5.2 with precise point positioning (PPP) and Vienna mapping function 1 (VMF1) was applied to estimate the zenith tropospheric delay (ZTD), which was compared with the International GNSS Service (IGS) Final products. The meteorological parameters sourced from the European Center for Medium-Range Weather Forecasts (ECMWF) and the local weighted mean temperature ( T m ) model were used to estimate the GPS PW for three years (May 2016 to April 2019). The results show that the differences of PW between two nearby GPS stations is nearly a constant with value 1.73 mm. In our case, this difference is mainly driven by insolation differences, the difference in altitude and the wind being only second factors.

2.
Sensors (Basel) ; 19(20)2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615029

ABSTRACT

The Von Kármán Crater, within the South Pole-Aitken (SPA) Basin, is the landing site of China's Chang'E-4 mission. To complement the in situ exploration mission and provide initial subsurface interpretation, we applied a 3D density inversion using the Gravity Recovery and Interior Laboratory (GRAIL) gravity data. We constrain our inversion method using known geological and geophysical lunar parameters to reduce the non-uniqueness associated with gravity inversion. The 3D density models reveal vertical and lateral density variations, 2600-3200 kg/m3, assigned to the changing porosity beneath the Von Kármán Crater. We also identify two mass excess anomalies in the crust with a steep density contrast of 150 kg/m3, which were suggested to have been caused by multiple impact cratering. The anomalies from recovered near surface density models, together with the gravity derivative maps extending to the lower crust, are consistent with surface geological manifestation of excavated mantle materials from remote sensing studies. Therefore, we suggest that the density distribution of the Von Kármán Crater indicates multiple episodes of impact cratering that resulted in formation and destruction of ancient craters, with crustal reworking and excavation of mantle materials.

3.
Science ; 349(6247): aab0639, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228153

ABSTRACT

The Philae lander provides a unique opportunity to investigate the internal structure of a comet nucleus, providing information about its formation and evolution in the early solar system. We present Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) measurements of the interior of Comet 67P/Churyumov-Gerasimenko. From the propagation time and form of the signals, the upper part of the "head" of 67P is fairly homogeneous on a spatial scale of tens of meters. CONSERT also reduced the size of the uncertainty of Philae's final landing site down to approximately 21 by 34 square meters. The average permittivity is about 1.27, suggesting that this region has a volumetric dust/ice ratio of 0.4 to 2.6 and a porosity of 75 to 85%. The dust component may be comparable to that of carbonaceous chondrites.

SELECTION OF CITATIONS
SEARCH DETAIL
...