Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122959, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37269652

ABSTRACT

Following its first observation 50 years ago Raman optical activity (ROA), which refers to a circular polarization dependence of Raman scattering from chiral molecules, has evolved into a powerful chiroptical spectroscopy for studying a large range of biomolecules in aqueous solution. Among other things ROA provides information about motif and fold as well as secondary structure of proteins; structure of carbohydrates and nucleic acids; polypeptide and carbohydrate structure of intact glycoproteins; and protein and nucleic acid structure of intact viruses. Quantum chemical simulations of observed Raman optical activity spectra can provide complete three-dimensional structures of biomolecules, together with information about conformational dynamics. This article reviews how ROA has provided new insight into the structure of unfolded/disordered states and sequences, ranging from the complete disorder of the random coil to the more controlled type of disorder exemplified by poly L-proline II helix in proteins, high mannose glycan chains in glycoproteins and constrained dynamic states of nucleic acids. Possible roles for this 'careful disorderliness' in biomolecular function, misfunction and disease are discussed, especially amyloid fibril formation.


Subject(s)
Nucleic Acids , Peptides , Optical Rotation , Peptides/chemistry , Glycoproteins , Protein Structure, Secondary , Spectrum Analysis, Raman/methods
2.
Chemistry ; 27(4): 1476-1477, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33355960

ABSTRACT

A recent mathematical analysis by Michel Petijean aimed at solving the Barron/Mislow controversy concerning the chirality or otherwise of a non-translating spinning cone concluded that both are right: the controversy is a matter of an arbitrary choice of a conversion factor. This reassessment highlights the different physicochemical properties of a stationary spinning cone and a chiral molecule and concludes that Petitjean's analysis is misleading.

3.
Light Sci Appl ; 9(1): 195, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33298854

ABSTRACT

Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm). Consequently, with conventional spectroscopy, ordered assemblies, such as the icosahedral capsids of viruses, appear to be indistinguishable isotropic spherical objects. This limits potential routes to rapid high-throughput portable detection appropriate for point-of-care diagnostics. Here, we demonstrate that chiral electromagnetic (EM) near fields, which have both enhanced chiral asymmetry (referred to as superchirality) and subwavelength spatial localisation (∼10 nm), can detect the icosahedral structure of virus capsids. Thus, they can detect both the presence and relative orientation of a bound virus capsid. To illustrate the potential uses of the exquisite structural sensitivity of subwavelength superchiral fields, we have used them to successfully detect virus particles in the complex milieu of blood serum.

4.
Nat Commun ; 11(1): 5169, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33057000

ABSTRACT

Manipulating symmetry environments of metal ions to control functional properties is a fundamental concept of chemistry. For example, lattice strain enables control of symmetry in solids through a change in the nuclear positions surrounding a metal centre. Light-matter interactions can also induce strain but providing dynamic symmetry control is restricted to specific materials under intense laser illumination. Here, we show how effective chemical symmetry can be tuned by creating a symmetry-breaking rotational bulk polarisation in the electronic charge distribution surrounding a metal centre, which we term a meta-crystal field. The effect arises from an interface-mediated transfer of optical spin from a chiral light beam to produce an electronic torque that replicates the effect of strain created by high pressures. Since the phenomenon does not rely on a physical rearrangement of nuclear positions, material constraints are lifted, thus providing a generic and fully reversible method of manipulating effective symmetry in solids.

5.
J Phys Chem Lett ; 10(20): 6105-6111, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31549842

ABSTRACT

Protein-protein interactions (PPIs) play a pivotal role in many biological processes. Discriminating functionally important well-defined protein-protein complexes formed by specific interactions from random aggregates produced by nonspecific interactions is therefore a critical capability. While there are many techniques which enable rapid screening of binding affinities in PPIs, there is no generic spectroscopic phenomenon which provides rapid characterization of the structure of protein-protein complexes. In this study we show that chiral plasmonic fields probe the structural order and hence the level of PPI specificity in a model antibody-antigen system. Using surface-immobilized Fab' fragments of polyclonal rabbit IgG antibodies with high specificity for bovine serum albumin (BSA), we show that chiral plasmonic fields can discriminate between a structurally anisotropic ensemble of BSA-Fab' complexes and random ovalbumin (OVA)-Fab' aggregates, demonstrating their potential as the basis of a useful proteomic technology for the initial rapid high-throughput screening of PPIs.


Subject(s)
Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/metabolism , Nanostructures/chemistry , Polycarboxylate Cement/chemistry , Serum Albumin, Bovine/metabolism , Animals , Anisotropy , Cattle , Gold/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/immunology , Ovalbumin/immunology , Ovalbumin/metabolism , Protein Binding , Rabbits , Serum Albumin, Bovine/immunology , Spectrum Analysis/methods , Stereoisomerism
6.
Chemphyschem ; 20(5): 695-705, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30688397

ABSTRACT

Structural analysis of carbohydrates is a complicated endeavour, due to the complexity and diversity of the samples at hand. Herein, we apply a combined computational and experimental approach, employing molecular dynamics (MD) and density functional theory (DFT) calculations together with NMR and Raman optical activity (ROA) measurements, in the structural study of three mannobiose disaccharides, consisting of two mannoses with varying glycosidic linkages. The disaccharide structures make up the scaffold of high mannose glycans and are therefore important targets for structural analysis. Based on the MD population analysis and NMR, the major conformers of each mannobiose were identified and used as input for DFT analysis. By systematically varying the solvent models used to describe water interacting with the molecules and applying overlap integral analysis to the resulting calculational ROA spectra, we found that a full quantum mechanical/molecular mechanical approach is required for an optimal calculation of the ROA parameters. Subsequent normal mode analysis of the predicted vibrational modes was attempted in order to identify possible marker bands for glycosidic linkages. However, the normal mode vibrations of the mannobioses are completely delocalised, presumably due to conformational flexibility in these compounds, rendering the identification of isolated marker bands unfeasible.

7.
J Am Chem Soc ; 140(27): 8509-8517, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29909628

ABSTRACT

The structural order of biopolymers, such as proteins, at interfaces defines the physical and chemical interactions of biological systems with their surroundings and is hence a critical parameter in a range of biological problems. Known spectroscopic methods for routine rapid monitoring of structural order in biolayers are generally only applied to model single-component systems that possess a spectral fingerprint which is highly sensitive to orientation. This spectroscopic behavior is not a generic property and may require the addition of a label. Importantly, such techniques cannot readily be applied to real multicomponent biolayers, have ill-defined or unknown compositions, and have complex spectroscopic signatures with many overlapping bands. Here, we demonstrate the sensitivity of plasmonic fields with enhanced chirality, a property referred to as superchirality, to global orientational order within both simple model and "real" complex protein layers. The sensitivity to structural order is derived from the capability of superchiral fields to detect the anisotropic nature of electric dipole-magnetic dipole response of the layer; this is validated by numerical simulations. As a model study, the evolution of orientational order with increasing surface density in layers of the antibody immunoglobulin G was monitored. As an exemplar of greater complexity, superchiral fields are demonstrated, without knowledge of exact composition, to be able to monitor how qualitative changes in composition alter the structural order of protein layers formed from blood serum, thereby establishing the efficacy of the phenomenon as a tool for studying complex biological interfaces.


Subject(s)
Blood Proteins/chemistry , Nanostructures/chemistry , Adsorption , Gold/chemistry , Humans , Immunoglobulin G/chemistry , Models, Molecular , Polycarboxylate Cement/chemistry , Spectrum Analysis
8.
ACS Nano ; 11(12): 12049-12056, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29220155

ABSTRACT

The structure adopted by biomaterials, such as proteins, at interfaces is a crucial parameter in a range of important biological problems. It is a critical property in defining the functionality of cell/bacterial membranes and biofilms (i.e., in antibiotic-resistant infections) and the exploitation of immobilized enzymes in biocatalysis. The intrinsically small quantities of materials at interfaces precludes the application of conventional spectroscopic phenomena routinely used for (bio)structural analysis due to a lack of sensitivity. We show that the interaction of proteins with superchiral fields induces asymmetric changes in retardation phase effects of excited bright and dark modes of a chiral plasmonic nanostructure. Phase retardations are obtained by a simple procedure, which involves fitting the line shape of resonances in the reflectance spectra. These interference effects provide fingerprints that are an incisive probe of the structure of interfacial biomolecules. Using these fingerprints, layers composed of structurally related proteins with differing geometries can be discriminated. Thus, we demonstrate a powerful tool for the bioanalytical toolbox.


Subject(s)
Nanostructures/chemistry , Proteins/chemistry , Silicon/chemistry , Optical Imaging , Protein Conformation
9.
Phys Chem Chem Phys ; 18(46): 31757-31768, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27841400

ABSTRACT

In the past few decades, Raman optical activity (ROA) spectroscopy has been shown to be very sensitive to the solution structure of peptides and proteins. A major and urgent challenge remains the need to make detailed assignments of experimental ROA patterns and relate those to the solution structure adopted by the protein. In the past few years, theoretical developments and implementations of ROA theory have made it possible to use quantum chemical methods to compute the ROA spectra of peptides. In this work, a large database of ROA spectra of peptide model structures describing the allowed backbone conformations of proteins was systematically calculated and used to make unprecedented detailed assignments of experimental ROA patterns to the conformational elements of the peptide in solution. By using a similarity index to compare an experimental spectrum to the database spectra (2902 theoretical spectra), the conformational preference of the peptide in solution can be assigned to a very specific region in the Ramachandran space. For six (poly)peptides this approach was validated and gives excellent agreement between experiment and theory. Additionally, hydrogen/deuterium exchanged structures and the conformational dependence of the amide modes in Raman spectra can be analysed using the new database. The excellent agreement between experiment and theory demonstrates the power of the newly developed database as a tool to study Raman and ROA patterns of peptides and proteins. The interpretation of experimental ROA patterns of different proteins published in the scientific literature is discussed based on the spectral trends observed in the database.


Subject(s)
Peptides/chemistry , Spectrum Analysis, Raman/methods , Databases, Protein , Hydrogen Bonding , Models, Chemical , Protein Structure, Secondary , Quantum Theory
10.
Nano Lett ; 16(9): 5806-14, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27547978

ABSTRACT

The refractive index sensitivity of plasmonic fields has been exploited for over 20 years in analytical technologies. While this sensitivity can be used to achieve attomole detection levels, they are in essence binary measurements that sense the presence/absence of a predetermined analyte. Using plasmonic fields, not to sense effective refractive indices but to provide more "granular" information about the structural characteristics of a medium, provides a more information rich output, which affords opportunities to create new powerful and flexible sensing technologies not limited by the need to synthesize chemical recognition elements. Here we report a new plasmonic phenomenon that is sensitive to the biomacromolecular structure without relying on measuring effective refractive indices. Chiral biomaterials mediate the hybridization of electric and magnetic modes of a chiral solid-inverse plasmonic structure, resulting in a measurable change in both reflectivity and chiroptical properties. The phenomenon originates from the electric-dipole-magnetic-dipole response of the biomaterial and is hence sensitive to biomacromolecular secondary structure providing unique fingerprints of α-helical, ß-sheet, and disordered motifs. The phenomenon can be observed for subchiral plasmonic fields (i.e., fields with a lower chiral asymmetry than circularly polarized light) hence lifting constraints to engineer structures that produce fields with enhanced chirality, thus providing greater flexibility in nanostructure design. To demonstrate the efficacy of the phenomenon, we have detected and characterized picogram quantities of simple model helical biopolymers and more complex real proteins.


Subject(s)
Nanostructures , Proteins/chemistry , Refractometry , Concanavalin A , Electricity , Protein Conformation , Serum Albumin, Bovine
11.
Nat Commun ; 7: 10946, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26961708

ABSTRACT

Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these 'hotspots' has previously been accomplished through inefficient 'top-down' methods. Here we report a rapid 'bottom-up' approach to functionalize selective regions of plasmonic nanostructures that uses nano-localized heating of the surrounding water induced by pulsed laser irradiation. This localized heating is exploited in a chemical protection/deprotection strategy to allow selective regions of a nanostructure to be chemically modified. As an exemplar, we use the strategy to enhance the biosensing capabilities of a chiral plasmonic substrate. This novel spatially selective functionalization strategy provides new opportunities for efficient high-throughput control of chemistry on the nanoscale over macroscopic areas for device fabrication.

12.
Adv Mater ; 27(37): 5610-6, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26306427

ABSTRACT

Development of low-cost disposable plasmonic substrates is vital for the applicability of plasmonic sensing. Such devices can be made using injection-molded templates to create plasmonic films. The elements of these plasmonic films are hybrid nanostructures composed of inverse and solid structures. Tuning the modal coupling between the two allows optimization of the optical properties for nanophotonic applications.

13.
J Am Chem Soc ; 137(26): 8380-3, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26102606

ABSTRACT

Optical spectroscopic methods do not routinely provide information on higher order hierarchical structure (tertiary/quaternary) of biological macromolecules and assemblies. This necessitates the use of time-consuming and material intensive techniques, such as protein crystallography, NMR, and electron microscopy. Here we demonstrate a spectroscopic phenomenon, superchiral polarimetry, which can rapidly characterize ligand-induced changes in protein higher order (tertiary/quaternary) structure at the picogram level, which is undetectable using conventional CD spectroscopy. This is achieved by utilizing the enhanced sensitivity of superchiral evanescent fields to mesoscale chiral structure.


Subject(s)
Nanostructures/chemistry , Proteins/chemistry , Spectrophotometry/methods , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Buffers , Circular Dichroism , Dickeya chrysanthemi/enzymology , Escherichia coli/enzymology , Ligands , Macromolecular Substances , Microscopy, Electron, Scanning , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Stereoisomerism
14.
Nanoscale ; 5(24): 12651-7, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24186434

ABSTRACT

We demonstrate that engineered artificial gold chiral nanostructures display significant levels of non-linear optical activity even without plasmonic enhancement. Our work suggests that although plasmonic excitation enhances the intensity of second harmonic emission it is not a prerequisite for significant non-linear (second harmonic) optical activity. It is also shown that the non-linear optical activities of both the chiral nanostructures and simple chiral molecules on surfaces have a common origin, namely pure electric dipole excitation. This is a surprising observation given the significant difference in length scales, three orders of magnitude, between the nanostructures and simple chiral molecules. Intuitively, given that the dimensions of the nanostructures are comparable to the wavelength of visible light, one would expect non-localised higher multipole excitation (e.g. electric quadrupole and magnetic dipole) to make the dominant contribution to non-linear optical activity. This study provides experimental evidence that the electric dipole origin of non-linear optical activity is a generic phenomenon which is not limited to sub-wavelength molecules and assemblies. Our work suggests that viewing non-plasmonic nanostructures as "meta-molecules" could be useful for rationally designing substrates for optimal non-linear optical activity.

15.
Chirality ; 24(12): 957-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22930646

ABSTRACT

The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life.

16.
Chirality ; 24(11): 879-93, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22522780

ABSTRACT

A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses.


Subject(s)
Proteins/chemistry , Magnetic Phenomena , Optical Phenomena , Spectrum Analysis, Raman , Stereoisomerism
17.
18.
Angew Chem Int Ed Engl ; 50(42): 9973-6, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21901805

ABSTRACT

Splitting it up: excellent agreement between the experimental and the quantum-chemically simulated Raman optical activity (ROA) spectrum of (+)-poly(trityl methacrylate) shows that the polymer backbone adopts a left-handed helical conformation while the trityl side groups display a left-handed propeller conformation. Thus ROA can be used to determine the complete structure of synthetic chiral polymers in solution.


Subject(s)
Polymers/chemistry , Circular Dichroism , Molecular Structure , Polymers/chemical synthesis , Spectrum Analysis, Raman
20.
Biomacromolecules ; 10(6): 1662-4, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19499952

ABSTRACT

Vibrational Raman optical activity (ROA), measured as small circularly polarized components in Raman scattering from chiral molecules, was applied to study the backbone conformations of the first five generations of poly(L-lysine) dendrigrafts (DGLs) in water. Generation 1 was found to support predominantly the poly(L-proline) II (PPII) conformation, the amount of which steadily decreased with increasing generation, with a concomitant increase in other backbone conformations. This behavior may be due to increasing crowding of the lysine side chains, together with suppression of backbone hydration, with increasing branching. In contrast, the ROA spectra of a series of linear poly(L-lysine)s in water show little change with increasing molecular weight. Our results may have implications for the nonimmunogenic properties of DGLs.


Subject(s)
Peptides/chemistry , Polylysine/chemistry , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...