Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Biophys J ; 49(6): 449-462, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32681183

ABSTRACT

The structural study of small heme-containing proteins, such as myoglobin, in the apo-form lacking heme has been extensively described, but the characterization and stability of the giant Glossoscolex paulistus hemoglobin (HbGp), in the absence of heme groups, has not been studied. Spectroscopic data show efficient extraction of the heme groups from the hemoglobin, with relatively small secondary and tertiary structural changes in apo-HbGp noticed compared to oxy-HbGp. Electrophoresis shows a partial precipitation of the trimer abc (significantly lower intensity of the corresponding band in the gel), due to extraction of heme groups, and the predominance of the intense monomeric d band, as well as of two linker bands. AUC and DLS data agree with SDS-PAGE in showing that the apo-HbGp undergoes dissociation into the d and abc subunits. Subunits d and abc are characterized by sedimentation coefficients and percentage contributions of 2.0 and 3.0 S and 76 and 24%, respectively. DLS data suggest that the apo-HbGp is unstable, and two populations are present in solution: one with a diameter around 6.0 nm, identified with the dissociated species, and a second one with diameter 100-180 nm, due to aggregated protein. Finally, the presence of urea promotes the exposure of the fluorescent probes, extrinsic ANS and intrinsic protein tryptophans to the aqueous solvent due to the unfolding process. An understanding of the effect of heme extraction on the stability of hemoproteins is important for biotechnological approaches such as the introduction of non-native prosthetic groups and development of artificial enzymes with designed properties.


Subject(s)
Apoproteins/chemistry , Apoproteins/metabolism , Extracellular Space/metabolism , Hemoglobins/chemistry , Hemoglobins/metabolism , Oligochaeta , Urea/pharmacology , Animals , Protein Stability/drug effects
2.
Int J Biol Macromol ; 98: 777-785, 2017 May.
Article in English | MEDLINE | ID: mdl-28192141

ABSTRACT

Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been followed, in the presence of urea, using fluorescein isothiocyanate (FITC). Binding of FITC to HbGp results in a significant quenching of probe fluorescence. Tryptophan emission decays present four characteristic lifetimes: two in the sub-nanosecond/picosecond, and two in the nanosecond time ranges. Tryptophan decays for pure HbGp and HbGp-FITC systems are similar. In the absence of denaturant, and up to 2.5mol/L of urea, the shorter lifetimes predominate. At 3.5 and 6.0mol/L of urea, the longer lifetimes increase significantly their contribution. Urea-induced unfolding process is characterized by protein oligomeric dissociation and denaturation of dissociated subunits. FITC emission decays for FITC-HbGp system are also multi-exponential with three lifetimes: two in the sub-nanosecond and one in the nanosecond range with a value similar to free probe in buffer. Increase of urea concentration leads to increase of the longer lifetime contribution, implying the removal of the quenching observed for the native HbGp-FITC system. Anisotropy decays are characterized by two rotational correlation times associated to re-orientational motions of the probe relative to protein. Our results suggest that FITC bound to HbGp is useful to monitor denaturant effects on the protein.


Subject(s)
Fluorescein-5-isothiocyanate/chemistry , Hemoglobins/chemistry , Protein Denaturation , Urea/chemistry , Animals , Fluorescence , Oligochaeta/chemistry , Tryptophan/chemistry
3.
Int J Biol Macromol ; 74: 327-36, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25546245

ABSTRACT

Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding.


Subject(s)
Anilino Naphthalenesulfonates/pharmacology , Hemoglobins/chemistry , Protein Denaturation/drug effects , Animals , Hydrodynamics , Hydrogen-Ion Concentration , Oligochaeta/chemistry , Oxygen/chemistry , Protein Multimerization/drug effects , Protein Stability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...