Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 43(6): 789-804, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32744169

ABSTRACT

Highly efficient simultaneous removal of paracetamol and Cu2+ ions from aqueous solutions was accomplished by using bovine bone char (BC). The adsorption behaviour was determined by kinetic and equilibrium studies of both single and binary system solutions. BC is a predominantly mesoporous material with a surface area of 103 m2 g-1. The influence of the initial pH on Cu2+ removal was tested, suggesting that the optimal pH was 3.0. The removal of paracetamol from single and binary systems was 9.45 and 12.7%, respectively. On the other hand, the Cu2+ removal was 36.2% for a single system, suggesting a higher affinity for BC. Moreover, in the case of binary mixtures, the presence of paracetamol led to an enhanced affinity of Cu2+ due to a synergistic/cooperative mechanism, which led to a copper removal of 97.3%. The cooperative model was successfully adjusted to the equilibrium data of the binary systems. The modelling results indicated the formation of a first adsorption layer where paracetamol and copper are retained, and a second layer with a great affinity for copper ions after the formation of a Cu-paracetamol complex, leading to higher removal of Cu2+.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Animals , Cattle , Copper/analysis , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis
2.
J Hazard Mater ; 161(2-3): 1404-12, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-18565651

ABSTRACT

The uptake capacity of Fe(III) and Zn(II) ions in NaY zeolite was investigated. Experiments were carried out in a fixed bed column at 30 degrees C, pH 3.5 and 4.5 for Fe(III) and Zn(II), respectively, and an average particle size of 0.180 mm. In order to minimize the diffusional resistances the influence of flow rate on the breakthrough curves at feed concentrations of 1.56 meq/L for Fe(III) and 0.844 meq/L for Zn(II) was investigated. Flow rate of the minimal resistance in the bed according to mass transfer parameter were 2.0 mL/min for iron and 8.0 mL/min for zinc ions. Freundlich and Langmuir isotherm models have been used to represent the column equilibrium data. The iron dynamic isotherm was successfully modeled by the Langmuir equation and this mathematical model described well the experimental breakthrough curves for feed concentrations from 0.1 up to 3.5 meq/L. The zinc dynamic isotherm was successfully modeled by the Freundlich equation. This equilibrium model was applied to mathematical model. Experimental breakthrough curves could be predicted. Experiments were also carried out in a batch reactor to investigate the kinetics adsorption of the ions Fe(III) and Zn(II). Langmuir kinetic model fit well both experimental data.


Subject(s)
Iron/analysis , Sodium/chemistry , Yttrium/chemistry , Zeolites/chemistry , Zinc/analysis , Adsorption , Hydrogen-Ion Concentration , Ion Exchange , Ions , Kinetics , Models, Chemical , Models, Statistical , Models, Theoretical , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...