Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 24(12): 5882-5897, 2022 12.
Article in English | MEDLINE | ID: mdl-36054062

ABSTRACT

The ability of freshwater bacteria to secrete extracellular vesicles (EVs) upon interaction with viruses remains to be established. Here, we investigated for the first time if freshwater virus-infected bacteria release EVs in both natural ecosystems and virus-like particles (VLPs)-enriched cultures. We performed a systematic study using transmission electron microscopy to visualize viruses and EVs at high resolution and single-cell imaging analyses to quantitate nascent EVs at the surface of gram-negative bacteria. First, by analysing freshwater samples from a tropical ecosystem (Negro River/Amazon Basin/Brazil), we captured bacteriophages-infected bacteria releasing EVs from their outer membrane. Next, VLPs isolated from these samples and inoculated in bacterial cultures not only impacted bacteria growth and viability but also led them to a significant release of EVs (~300% increase in numbers/cell section) compared to controls. The numbers of both budding and free EVs and EVs per linear micrometre of cell envelope were significantly higher in infected bacteria. Our findings identify a yet-not recognized capability of freshwater bacteria in generating EVs (overvesiculation) in response to viral infection. Since viruses are abundant members of aquatic ecosystems and bacteria are natural hosts for them, such interaction is an interesting event for microbial communities to be explored in freshwater ecosystems.


Subject(s)
Bacteriophages , Extracellular Vesicles , Ecosystem , Fresh Water/microbiology , Bacteria
2.
Front Microbiol ; 7: 717, 2016.
Article in English | MEDLINE | ID: mdl-27242737

ABSTRACT

Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m(-2) d(-1)), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m(-2) d(-1)). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m(-2) d(-1)). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m(-2) d(-1)) and diffusive CH4 (11 ± 6 mg C m(-2) d(-1)). OC sedimentation was high (1162 mg C m(-2) d(-1)), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m(-2) d(-1)) rather than buried as OC (440 mg C m(-2) d(-1)). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.

3.
Front Microbiol ; 6: 158, 2015.
Article in English | MEDLINE | ID: mdl-25788895

ABSTRACT

In response to the massive volume of water along the Amazon River, the Amazon tributaries have their water backed up by 100s of kilometers upstream their mouth. This backwater effect is part of the complex hydrodynamics of Amazonian surface waters, which in turn drives the variation in concentrations of organic matter and nutrients, and also regulates planktonic communities such as viruses and bacteria. Viruses and bacteria are commonly tightly coupled to each other, and their ecological role in aquatic food webs has been increasingly recognized. Here, we surveyed viral and bacterial abundances (BAs) in 26 floodplain lakes along the Trombetas River, the largest clear-water tributary of the Amazon River's north margin. We correlated viral and BAs with temperature, pH, dissolved inorganic carbon, dissolved organic carbon (DOC), phosphorus, nitrogen, turbidity, water transparency, partial pressure of carbon dioxide (pCO2), phytoplankton abundance, and distance from the lake mouth until the confluence of the Trombetas with the Amazon River. We hypothesized that both bacterial and viral abundances (VAs) would change along a latitudinal gradient, as the backwater effect becomes more intense with increased proximity to the Amazon River; different flood duration and intensity among lakes and waters with contrasting sources would cause spatial variation. Our measurements were performed during the low water period, when floodplain lakes are in their most lake-like conditions. Viral and BAs, DOC, pCO2, and water transparency increased as distance to the Amazon River increased. Most viruses were bacteriophages, as viruses were strongly linked to bacteria, but not to phytoplankton. We suggest that BAs increase in response to DOC quantity and possibly quality, consequently leading to increased VAs. Our results highlight that hydrodynamics plays a key role in the regulation of planktonic viral and bacterial communities in Amazonian floodplain lakes.

4.
Methods Mol Biol ; 689: 215-27, 2011.
Article in English | MEDLINE | ID: mdl-21153795

ABSTRACT

Planktonic organisms dominate waters in ponds, lakes and oceans. Because of their short life cycles, plankters respond quickly to environmental changes and the variability in their density and composition are more likely to indicate the quality of the water mass in which they are found. Planktonic community is formed by numerous organisms from distinct taxonomic position, ranging from 0.2 µm up to 2 mm. Despite others, the light microscopy is the most used apparatus to enumerate these organisms and different techniques are necessary to cover differences in morphology and size. Here we present some of the main light microscopy methods used to quantify different components of planktonic communities, such as virus, bacteria, algae and animals.


Subject(s)
Ecosystem , Hydrobiology/methods , Microscopy/methods , Plankton/cytology , Bacteria , Population Density , Species Specificity , Viruses
SELECTION OF CITATIONS
SEARCH DETAIL
...