Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Malar J ; 18(1): 213, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234939

ABSTRACT

BACKGROUND: Malaria represents a worldwide medical emergency affecting mainly poor areas. Plasmodium parasites during blood stages can release kinins to the extracellular space after internalization of host kininogen inside erythrocytes and these released peptides could represent an important mechanism in liver pathophysiology by activation of calcium signaling pathway in endothelial cells of vertebrate host. Receptors (B1 and B2) activated by kinins peptides are important elements for the control of haemodynamics in liver and its physiology. The aim of this study was to identify changes in the liver host responses (i.e. kinin receptors expression and localization) and the effect of ACE inhibition during malaria infection using a murine model. METHODS: Balb/C mice infected by Plasmodium chabaudi were treated with captopril, an angiotensin I-converting enzyme (ACE) inhibitor, used alone or in association with the anti-malarial chloroquine in order to study the effect of ACE inhibition on mice survival and the activation of liver responses involving B1R and B2R signaling pathways. The kinin receptors (B1R and B2R) expression and localization was analysed in liver by western blotting and immunolocalization in different conditions. RESULTS: It was verified that captopril treatment caused host death during the peak of malaria infection (parasitaemia about 45%). B1R expression was stimulated in endothelial cells of sinusoids and other blood vessels of mice liver infected by P. chabaudi. At the same time, it was also demonstrated that B1R knockout mice infected presented a significant reduction of survival. However, the infection did not alter the B2R levels and localization in liver blood vessels. CONCLUSIONS: Thus, it was observed through in vivo studies that the vasodilation induced by plasma ACE inhibition increases mice mortality during P. chabaudi infection. Besides, it was also seen that the anti-malarial chloroquine causes changes in B1R expression in liver, even after days of parasite clearance. The differential expression of B1R and B2R in liver during malaria infection may have an important role in the disease pathophysiology and represents an issue for clinical treatments.


Subject(s)
Gene Expression Regulation , Liver/physiopathology , Malaria/physiopathology , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B2/genetics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Captopril/pharmacology , Chloroquine/pharmacology , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred BALB C , Plasmodium chabaudi , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B2/metabolism
2.
Int J Biochem Cell Biol ; 77(Pt A): 155-164, 2016 08.
Article in English | MEDLINE | ID: mdl-27270332

ABSTRACT

Proteolytic enzymes mediate the activation or inactivation of many physiologic and pathologic processes. The PHEX gene (Phosphate-regulating gene with homologies to endopeptidase on the X chromosome) encodes a metallopeptidase, which is mutated in patients with a prevalent form (1:20,000) of inherited rickets-X-linked hypophosphatemia (XLH). XLH shows growth retardation, hypophosphatemia, osteomalacia, and defective renal phosphate reabsorption and metabolism of vitamin D. Most PHEX studies have focused on bone, and recently we identified osteopontin (OPN) as the first protein substrate for PHEX, demonstrating in the murine model of XLH (Hyp mice) an increase in OPN that contributes to the osteomalacia. Besides its role in bone mineralization, OPN is expressed in many tissues, and therein has different functions. In tumor biology, OPN is known to be associated with metastasis. Here, we extend our PHEX-OPN studies to investigate PHEX expression in a squamous cell carcinoma (SCC) cell line and its possible involvement in modulating OPN function. Real-time PCR showed PHEX-OPN co-expression in SCC cells, with sequencing of the 22 exons showing no mutation of the PHEX gene. Although recombinant PHEX hydrolyze SCC-OPN fragments, unlike in bone cells, SCC-PHEX protein was not predominantly at the plasma membrane. Enzymatic activity assays, FACs and immunoblotting analyses demonstrated that membrane PHEX is degraded by cysteine proteases and the decreased PHEX activity could contribute to inappropriate OPN regulation. These results highlight for the first time PHEX in tumor biology.


Subject(s)
Carcinoma, Squamous Cell/pathology , Gene Expression Regulation, Neoplastic , Osteopontin/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Proteolysis , Cell Membrane/metabolism , Cysteine Proteases/metabolism , Enzyme Activation , Humans , Osteopontin/genetics , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Exp Eye Res ; 134: 39-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25795052

ABSTRACT

Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.


Subject(s)
Cathepsins/metabolism , Corneal Neovascularization/enzymology , Disease Models, Animal , Animals , Blotting, Western , Cathepsins/genetics , Corneal Neovascularization/pathology , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation/physiology , Humans , Plasminogen/metabolism , RNA, Messenger/genetics , Rabbits , Real-Time Polymerase Chain Reaction , Tissue Donors
4.
Periodontol 2000 ; 63(1): 102-22, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23931057

ABSTRACT

As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth - where calcium phosphate crystals are deposited and grow within an extracellular matrix - is essential for dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition in which teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibers (Sharpey's fibers) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth-suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here, with clinical examples given, namely tissue-nonspecific alkaline phosphatase and phosphate-regulating gene with homologies to endopeptidases on the X chromosome. Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia and X-linked hypophosphatemia, respectively, where the levels of local and systemic circulating mineralization determinants are perturbed. In X-linked hypophosphatemia, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating small integrin-binding ligand N-linked glycoproteins, such as matrix extracellular phosphoglycoprotein and osteopontin, and the phosphorylated peptides proteolytically released from them, such as the acidic serine- and aspartate-rich-motif peptide, may accumulate locally to impair mineralization in this disease.


Subject(s)
Alveolar Process/physiology , Calcification, Physiologic/physiology , Dental Enamel Proteins/physiology , Extracellular Matrix/physiology , Familial Hypophosphatemic Rickets/physiopathology , Hypophosphatasia/physiopathology , Periodontal Ligament/physiology , Alkaline Phosphatase/physiology , Alveolar Process/enzymology , Animals , Calcium Phosphates/metabolism , Diphosphates/metabolism , Disease Models, Animal , Endopeptidases/physiology , Extracellular Matrix/enzymology , Humans , Periodontal Ligament/enzymology
5.
J Bone Miner Res ; 28(3): 688-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22991293

ABSTRACT

X-linked hypophosphatemia (XLH/HYP)-with renal phosphate wasting, hypophosphatemia, osteomalacia, and tooth abscesses-is caused by mutations in the zinc-metallopeptidase PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome). PHEX is highly expressed by mineralized tissue cells. Inactivating mutations in PHEX lead to distal renal effects (implying accumulation of a secreted, circulating phosphaturic factor) and accumulation in bone and teeth of mineralization-inhibiting, acidic serine- and aspartate-rich motif (ASARM)-containing peptides, which are proteolytically derived from the mineral-binding matrix proteins of the SIBLING family (small, integrin-binding ligand N-linked glycoproteins). Although the latter observation suggests a local, direct matrix effect for PHEX, its physiologically relevant substrate protein(s) have not been identified. Here, we investigated two SIBLING proteins containing the ASARM motif-osteopontin (OPN) and bone sialoprotein (BSP)-as potential substrates for PHEX. Using cleavage assays, gel electrophoresis, and mass spectrometry, we report that OPN is a full-length protein substrate for PHEX. Degradation of OPN was essentially complete, including hydrolysis of the ASARM motif, resulting in only very small residual fragments. Western blotting of Hyp (the murine homolog of human XLH) mouse bone extracts having no PHEX activity clearly showed accumulation of an ∼35 kDa OPN fragment that was not present in wild-type mouse bone. Immunohistochemistry and immunogold labeling (electron microscopy) for OPN in Hyp bone likewise showed an accumulation of OPN and/or its fragments compared with normal wild-type bone. Incubation of Hyp mouse bone extracts with PHEX resulted in the complete degradation of these fragments. In conclusion, these results identify full-length OPN and its fragments as novel, physiologically relevant substrates for PHEX, suggesting that accumulation of mineralization-inhibiting OPN fragments may contribute to the mineralization defect seen in the osteomalacic bone characteristic of XLH/HYP.


Subject(s)
Bone and Bones/metabolism , Familial Hypophosphatemic Rickets/metabolism , Genetic Diseases, X-Linked , Osteopontin/metabolism , PHEX Phosphate Regulating Neutral Endopeptidase/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Disease Models, Animal , Electrophoresis, Polyacrylamide Gel , Immunohistochemistry , Mass Spectrometry , Mice , Molecular Sequence Data , Osteopontin/chemistry , Proteolysis
6.
Am J Ophthalmol ; 155(4): 705-12, 712.e1, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23253911

ABSTRACT

PURPOSE: To investigate the in vitro effect of pH, osmolarity, solvent, and light interaction on currently used and novel dyes to minimize dye-related retinal toxicity. DESIGN: Laboratory investigation. METHODS: Retinal pigment epithelium (RPE) human cells (ARPE-19) were exposed for 10 minutes to different pH solutions (4, 5, 6, 7, 7.5, 8, and 9) and glucose solutions (2.5%, 5.0%, 10%, 20%, 40%, and 50%) with osmolarity from 142 to 2530 mOsm, with and without 0.5 mg/mL trypan blue. R28 cells were also incubated with glucose (150, 310, and 1000 mOsm) and mannitol used as an osmotic control agent in both experiments. Dye-light interaction was assessed by incubating ARPE-19 for 10 minutes with trypan blue, brilliant blue, bromophenol blue, fast green, light green, or indigo carmine (0.05 mg/mL diluted in balanced saline solution) in the presence of high-brightness xenon and mercury vapor light sources. RESULTS: Solutions with nonphysiologic pH, below 7 and above 7.5, proved to be remarkably toxic to RPE cells with or without trypan blue. Also, all glucose solutions were deleterious to RPE (P < .001) even in iso-osmolar range. No harmful effect was found with mannitol solutions. Among the dyes tested, only light green and fast green were toxic to ARPE-19 (P < .001). Light exposure did not increase RPE toxicity either with xenon light or mercury vapor lamp. CONCLUSIONS: Solutions containing glucose as a dye solvent or nonphysiologic pH should be used with care in surgical situations where the RPE is exposed. Light exposure under present assay conditions did not increase the RPE toxicity.


Subject(s)
Coloring Agents/toxicity , Retinal Pigment Epithelium/drug effects , Acetates/pharmacology , Cell Survival , Cells, Cultured , Drug Combinations , Glucose Solution, Hypertonic , Humans , Hydrogen-Ion Concentration , Light/adverse effects , Minerals/pharmacology , Osmolar Concentration , Prospective Studies , Retinal Neurons/drug effects , Retinal Neurons/pathology , Retinal Neurons/radiation effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/radiation effects , Sodium Chloride/pharmacology , Trypan Blue
7.
J Endocrinol ; 214(2): 217-24, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653842

ABSTRACT

Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.


Subject(s)
Cathepsins/metabolism , Leptin/antagonists & inhibitors , Leptin/metabolism , Protein Processing, Post-Translational , Adipose Tissue, White/enzymology , Adipose Tissue, White/metabolism , Amino Acid Sequence , Angiogenesis Inducing Agents/pharmacology , Animals , Catalytic Domain , Cathepsins/physiology , Cells, Cultured , Cysteine Proteases/metabolism , Cysteine Proteases/physiology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/physiology , Humans , Leptin/chemistry , Leptin/pharmacology , Male , Mass Spectrometry , Molecular Sequence Data , Rats , Rats, Wistar , Recombinant Proteins/metabolism
8.
PLoS One ; 6(9): e24545, 2011.
Article in English | MEDLINE | ID: mdl-21935423

ABSTRACT

The proprotein convertases (PCs) are calcium-dependent proteases responsible for processing precursor proteins into their active forms in eukariotes. The PC1/3 is a pivotal enzyme of this family that participates in the proteolytic maturation of prohormones and neuropeptides inside the regulated secretory pathway. In this paper we demonstrate that mouse proprotein convertase 1/3 (mPC1/3) has a lag phase of activation by substrates that can be interpreted as a hysteretic behavior of the enzyme for their hydrolysis. This is an unprecedented observation in peptidases, but is frequent in regulatory enzymes with physiological relevance. The lag phase of mPC1/3 is dependent on substrate, calcium concentration and pH. This hysteretic behavior may have implications in the physiological processes in which PC1/3 participates and could be considered an additional control step in the peptide hormone maturation processes as for instance in the transformation of proinsulin to insulin.


Subject(s)
Proprotein Convertase 1/metabolism , Animals , CHO Cells , Calcium/metabolism , Cricetinae , Electrophoresis, Polyacrylamide Gel , Histatins/metabolism , Hydrogen-Ion Concentration , Mice
9.
Biochimie ; 93(10): 1839-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21784122

ABSTRACT

In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PK) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PK binding to cell- or ECM-bound-HK and PK activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heparin/pharmacology , Prekallikrein/metabolism , Biotinylation/drug effects , Cell Line , Extracellular Matrix/metabolism , Glycosaminoglycans/pharmacology , Humans , Kininogens , Protein Binding/drug effects
10.
Vet Parasitol ; 181(2-4): 291-300, 2011 Sep 27.
Article in English | MEDLINE | ID: mdl-21536386

ABSTRACT

The tick Rhipicephalus (Boophilus) microplus is one of the most important bovine ectoparasites, a disease vector responsible for losses in meat and milk productions. A cysteine protease similar to cathepsin L, named BmCL1, was previously identified in R. microplus gut, suggesting a role of the enzyme in meal digestion. In this work, BmCL1 was successfully expressed in Pichia pastoris system, yielding 54.8 mg/L of culture and its activity was analyzed by synthetic substrates and against a R. microplus cysteine protease inhibitor, Bmcystatin. After rBmCl1 biochemical characterization it was used in a selection of a peptide phage library to determine rBmCL1 substrate preference. Obtained sequenced clones showed that rBmCL1 has preference for Leu or Arg at P(1) position. The preference for Leu at position P(1) and the activation of BmCL1 after a Leu amino acid residue suggest possible self activation.


Subject(s)
Cysteine Proteases/metabolism , Rhipicephalus/enzymology , Amino Acid Sequence , Animals , Cloning, Molecular , Cysteine Proteases/genetics , Gene Expression Regulation , Molecular Sequence Data , Peptide Library , Polymerase Chain Reaction , Rhipicephalus/genetics , Substrate Specificity
11.
Biol Chem ; 391(5): 561-70, 2010 May.
Article in English | MEDLINE | ID: mdl-20302511

ABSTRACT

Plasminogen is a glycoprotein implicated in angiogenesis and fibrin clot degradation associated with the release of angiostatin and plasmin activation, respectively. We have recently reported that cathepsin V, but not cathepsins L, B, and K, can release angiostatin-like fragments from plasminogen. Here, we extended the investigation to cathepsin S which has been implicated in angiogenesis and tumor cell proliferation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of plasminogen hydrolysis by cathepsin S revealed generation of two fragments (60 and 38 kDa). Amino-terminal sequencing indicated that cleavage occurs at the Leu469-Leu470 peptide bond. In contrast to cathepsin V, which possesses antiangiogenic activity, cathepsin S plasminogen cleavage products were not capable of inhibiting angiogenesis on endothelial cells. Moreover, we explored the different selectivities presented by cathepsins V and S towards plasminogen and synthesized fluorescence resonance energy transfer peptides encompassing the hydrolyzed peptide bonds by both enzymes. The peptide Abz-VLFEKKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp= N-[2,4-dinitrophenyl]ethylenediamine), hydrolyzed by cath-epsin V at the Phe-Glu bond, is a selective substrate for the enzyme when compared with cathepsins B, L, and S, whereas Abz-VLFEKKVYLQ-EDDnp is an efficient cathepsin L inhibitor. The demonstrated importance of the S(3)'-P(3)' interaction indicates the significance of the extended subsites for enzyme specificity and affinity.


Subject(s)
Cathepsin L/antagonists & inhibitors , Cathepsins/metabolism , Cysteine Endopeptidases/metabolism , Peptide Fragments/metabolism , Plasminogen/metabolism , Amino Acid Sequence , Humans , Hydrolysis , Peptide Fragments/pharmacology , Recombinant Proteins/metabolism , Substrate Specificity
12.
Peptides ; 31(4): 562-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20045715

ABSTRACT

Cathepsin S is a lysosomal cysteine peptidase of the papain superfamily which is implicated in physiological and pathological states. The enzyme is highly expressed in antigen presenting cells and is thought to play an important role in the processing of the major histocompatibility complex (MHC) class II-associated invariant chain. In pathological processes, cathepsin S is associated with Alzheimer's disease, atherosclerosis and obesity and can be regarded as a potential target in related disorders. However, due to the broad substrate specificities of the lysosomal cathepsins, the specific detection of cathepsin S is difficult when other cathepsins are present. In an attempt to distinguish cathepsin S from other cathepsins we synthesized and tested fluorescence resonance energy transfer (FRET) peptides derived from two of its putative natural substrates, namely insulin beta-chain and class II-associated invariant chain (CLIP). The influence of ionic strength on the catalytic activity and the enzyme stability in neutral pH was also analyzed. Using data gathered from our study we developed a selective substrate for cathepsin S and establish the assay conditions to differentiate the enzyme from cathepsins L, B, V and K. The peptide Abz-LEQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine]) in 50mM sodium phosphate buffer, pH 7.4, containing 1M NaCl was hydrolyzed by cathepsin S with k(cat)/K(m) value of 3585mM(-1)s(-1), and was resistant to hydrolysis by cathepsins L, V, K and B. Thus, we developed a sensitive and selective cathepsins S substrate that permits continuous measurement of the enzymatic activity even in crude tissue extracts.


Subject(s)
Cathepsins/chemistry , Fluorescence Resonance Energy Transfer/methods , Peptides/chemistry , Animals , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Cathepsin K/chemistry , Cathepsin K/genetics , Cathepsin K/metabolism , Cathepsins/genetics , Cathepsins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Hydrogen-Ion Concentration , Male , Osmolar Concentration , Peptides/genetics , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tissue Extracts/chemistry
13.
Regul Pept ; 158(1-3): 47-56, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19703499

ABSTRACT

In a previous paper we demonstrated that Ang-(3-4) counteracts inhibition of the Ca(2+)-ATPase by Ang II in the basolateral membranes of kidney proximal tubules cells (BLM). We have now investigated the enzymatic routs by which Ang II is converted to Ang-(3-4). Membrane-bound angiotensin converting enzyme, aminopeptidases and neprilysin were identified using fluorescent substrates. HPLC showed that Plummer's inhibitor but not Z-pro-prolinal blocks Ang II metabolism, suggesting that carboxypeptidase N catalyzes the conversion Ang II--> Ang-(1-7). Different combinations of bestatin, thiorphan, Plummer's inhibitor, Ang II and Ang-(1-5), and use of short proteolysis times, indicate that Ang-(1-7)--> Ang-(1-5)--> Ang-(1-4)--> Ang-(3-4) is a major route. When Ang III was combined with the same inhibitors, the following pathway was demonstrated: Ang III--> Ang IV--> Ang-(3-4). Ca(2+)-ATPase assays with different Ang II concentrations and different peptidase inhibitors confirm the existence of these pathways in BLM and show that a prolyl-carboxypeptidase may be an alternative catalyst for converting Ang II to Ang-(1-7). Overall, we demonstrated that BLM have all the peptidase machinery required to produce Ang-(3-4) in the vicinity of the Ca(2+)-ATPase, enabling a local RAS axis to effect rapid modulation of active Ca(2+) fluxes.


Subject(s)
Angiotensin II/metabolism , Kidney/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Basement Membrane/drug effects , Basement Membrane/enzymology , Basement Membrane/metabolism , Chromatography, High Pressure Liquid , Hydrolysis , Kidney/drug effects , Kidney/enzymology , Leucine/analogs & derivatives , Leucine/pharmacology , Lysine Carboxypeptidase/metabolism , Peptidyl-Dipeptidase A/metabolism , Thiorphan/pharmacology
14.
Int J Biochem Cell Biol ; 40(12): 2781-92, 2008.
Article in English | MEDLINE | ID: mdl-18585473

ABSTRACT

The PHEX gene (phosphate-regulating gene with homologies to endopeptidase on the X chromosome) identified as a mutated gene in patients with X-linked hypophosphatemia (XLH), encodes a protein (PHEX) that shows striking homologies to members of the M13 family of zinc metallopeptidases. In the present work the interaction of glycosaminoglycans with PHEX has been investigated by affinity chromatography, circular dichroism, protein intrinsic fluorescence analysis, hydrolysis of FRET substrates flow cytometry and confocal microscopy. PHEX was eluted from a heparin-Sepharose chromatography column at 0.8 M NaCl showing a strong interaction with heparin. Circular dichroism spectra and intrinsic fluorescence analysis showed that PHEX is protected by glycosaminoglycans against thermal denaturation. Heparin, heparan sulfate and chondroitin sulfate inhibited PHEX catalytic activity, however among them, heparin presented the highest inhibitory activity (Ki=2.5+/-0.2 nM). Flow cytometry analysis showed that PHEX conjugated to Alexa Fluor 488 binds to the cell surface of CHO-K1, but did not bind to glycosaminoglycans defective cells CHO-745. Endogenous PHEX was detected at the cell surface of CHO-K1 colocalized with heparan sulfate proteoglycans, but was not found at the cell surface of glycosaminoglycans defective cells CHO-745. In permeabilized cells, PHEX was detected in endoplasmic reticulum of both cells. In addition, we observed that PHEX colocalizes with heparan sulfate at the cell surface of osteoblasts. This is the first report that the metallopeptidase PHEX is a heparin binding protein and that the interaction with GAGs modulates its enzymatic activity, protein stability and cellular trafficking.


Subject(s)
Heparan Sulfate Proteoglycans/metabolism , Metalloproteases/metabolism , Proteins/metabolism , Animals , CHO Cells , Chromatography, Affinity , Circular Dichroism , Cricetinae , Cricetulus , Fluorescence Resonance Energy Transfer , Heparin/metabolism , Heparin/pharmacology , Heparitin Sulfate/metabolism , Heparitin Sulfate/physiology , Hydrolysis , Protein Binding , Proteins/genetics , Proteoglycans/metabolism , Proteoglycans/physiology , Recombinant Proteins/metabolism , Substrate Specificity
15.
Biol Chem ; 389(2): 195-200, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18163891

ABSTRACT

Abstract Cathepsin V is a lysosomal cysteine peptidase highly expressed in corneal epithelium; however, its function in the eye is still unknown. Here, we describe the capability of cathepsin V to hydrolyze plasminogen, which is also expressed in human cornea at levels high enough to produce physiologically relevant amounts of angiostatin-related molecules. The co-localization of these two proteins suggests an important role for the enzyme in the maintenance of corneal avascularity, essential for optimal visual performance. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of plasminogen digestion by cathepsin V revealed the generation of three major products of 60, 50 and 40 kDa, which were electrotransferred to polyvinylidene difluoride membranes and excised for characterization. NH(2)-terminal amino acid sequencing of these fragments revealed the sequences EKKVYL, TEQLAP and LLPNVE, respectively. These data are compatible with cleavage sites at plasminogen F94-E95, S358-T359 and V468-L469 peptide bonds generating fragments of the five-kringle domains. In contrast, we did not detect any plasminogen degradation by cathepsins B, K and L. Using a Matrigel assay, we confirmed the angiogenesis inhibition activity on endothelial cells caused by plasminogen processing by cathepsin V. Our results suggest a novel physiological role for cathepsin V related to the control of neovascularization in cornea.


Subject(s)
Angiogenesis Inhibitors , Cathepsins/metabolism , Peptide Fragments/analysis , Angiostatins , Cathepsin B/metabolism , Cathepsin K , Cathepsin L , Cornea/blood supply , Cysteine Endopeptidases/metabolism , Endothelial Cells/drug effects , Epithelium, Corneal/drug effects , Humans , Neovascularization, Pathologic/drug therapy , Plasminogen/metabolism
16.
Biol Chem ; 388(4): 447-55, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17391066

ABSTRACT

We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.


Subject(s)
Neprilysin/metabolism , 2,4-Dinitrophenol/metabolism , Animals , Bradykinin/metabolism , Fluorescence Resonance Energy Transfer , Hydrogen-Ion Concentration , Kidney/enzymology , Lung/enzymology , Male , Methyltransferases , Oligopeptides/metabolism , Rats , Sodium Chloride/pharmacology , Substrate Specificity , ortho-Aminobenzoates/metabolism
17.
Biol Chem ; 386(7): 699-704, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16207091

ABSTRACT

We investigated the ability of cathepsin L to induce a hypotensive effect after intravenous injection in rats and correlated this decrease in blood pressure with kinin generation. Simultaneously with blood pressure decrease, we detected plasma kininogen depletion in the treated rats. The effect observed in vivo was abolished by pre-incubation of cathepsin L with the cysteine peptidase-specific inhibitor E-64 (1 microM) or by previous administration of the bradykinin B2 receptor antagonist JE049 (4 mg/kg). A potentiation of the hypotensive effect caused by cathepsin L was observed by previous administration of the angiotensin I-converting enzyme inhibitor captopril (5 mg/kg). In vitro studies indicated that cathepsin L excised bradykinin from the synthetic fluorogenic peptide Abz-MTSVIRRPPGFSPFRAPRV-NH2, based on the Met375-Val393 sequence of rat kininogen (Abz = o-aminobenzoic acid). In conclusion, our data indicate that in vivo cathepsin L releases a kinin-related peptide, and in vitro experiments suggest that the kinin generated is bradykinin. Although it is well known that cysteine proteases are strongly inhibited by kininogen, cathepsin L could represent an alternative pathway for kinin production in pathological processes.


Subject(s)
Cathepsins/metabolism , Cysteine Endopeptidases/metabolism , Kinins/metabolism , Amino Acid Sequence , Animals , Antihypertensive Agents/pharmacology , Bradykinin/analogs & derivatives , Bradykinin/pharmacology , Captopril/pharmacology , Cathepsin L , Cathepsins/chemistry , Cysteine Endopeptidases/chemistry , Hydrolysis , Molecular Sequence Data , Rats , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Arch Biochem Biophys ; 435(1): 190-6, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15680921

ABSTRACT

Cathepsin P is a recently discovered placental cysteine protease that is structurally related to the more ubiquitously expressed, broad-specificity enzyme, cathepsin L. We studied the substrate specificity requirements of recombinant mouse cathepsin P using fluorescence resonance energy transfer (FRET) peptides derived from the lead sequence Abz-KLRSSKQ-EDDnp (Abz, ortho-aminobenzoic acid and EDDnp, N-[2,4-dinitrophenyl]ethylenediamine). Systematic modifications were introduced resulting in five series of peptides to map the S(3) to S(2)(') subsites of the enzyme. The results indicate that the subsites S(1), S(2), S(1)('), and S(2)('), present a clear preference for hydrophobic residues. The specificity requirements of the S(2) subsite were found to be more restricted, preferring hydrophobic aliphatic amino acids. The S(3) subsite of the enzyme presents a broad specificity, accepting negatively charged (Glu), positively charged (Lys, Arg), and hydrophobic aliphatic or aromatic residues (Val, Phe). For several substrates, the activity of cathepsin P was markedly regulated by kosmotropic salts, particularly Na(2)SO(4). No significant effect on secondary or tertiary structure could be detected by either circular dichroism or size exclusion chromatography, indicating that the salts most probably disrupt unfavorable ionic interactions between the substrate and enzyme active site. A substrate based upon the preferred P(3) to P(2)(') defined by the screening study, ortho-aminobenzoic-Glu-Ile-Phe-Val-Phe-Lys-Gln-N-(2,4-dinitrophenyl)ethylenediamine (cleaved at the Phe-Val bond) was efficiently hydrolyzed in the absence of high salt. The k(cat)/K(m) for this substrate was almost two orders of magnitude higher than that of the original parent compound. These results show that cathepsin P, in contrast to other mammalian cathepsins, has a restricted catalytic specificity.


Subject(s)
Cathepsins/chemistry , Peptides/chemistry , Pregnancy Proteins/chemistry , Animals , Binding Sites , Catalysis , Cathepsin K , Cathepsins/analysis , Enzyme Activation , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Mice , Protein Binding , Protein Conformation , Structure-Activity Relationship , Substrate Specificity
19.
Biol Chem ; 385(11): 1087-91, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15576330

ABSTRACT

Plasma kallikrein plays a role in coagulation, fibrinolysis and inflammation. Cathepsins B and L participate in (patho)physiological processes such as peptide antigen processing, tissue remodeling events, protein turnover in cells, hormone processing and tumor invasion. The present work analyzes the processing of prekallikrein/kallikrein by lysosomal cathepsins. Prekallikrein is not hydrolyzed by catB, and catL generates an inactive fragment of prekallikrein. Both kallikrein chains are hydrolyzed by catL and the light chain is mainly hydrolyzed by catB; kallikrein activity is lower after incubation with catL compared to catB. Our data suggest that the plasma kallikrein/ kinin system can be controlled by cathepsins.


Subject(s)
Cathepsins/metabolism , Kallikreins/blood , Lysosomes/enzymology , Prekallikrein/metabolism , Electrophoresis, Polyacrylamide Gel , Hydrolysis
20.
Biol Chem ; 385(6): 551-5, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15255189

ABSTRACT

We investigated the influence of pH and divalent cations (Zn2+, Mg2+ and Ca2+) on high molecular weight kininogen processing by cathepsin B. At pH 6.3, high molecular weight kininogen is hydrolyzed by cathepsin B at three sites generating fragments of 80, 60 and 40 kDa. Cathepsin B has kininogenase activity at this pH which is improved in the absence of divalent cations. At pH 7.35, high molecular weight kininogen is slightly cleaved by cathepsin B into fragments of 60 kDa, and cathepsin B kininogenase activity is impaired. Our results suggest that high molecular weight kininogen is a substrate for cathepsin B under pathophysiological conditions.


Subject(s)
Cathepsin B/chemistry , Kininogens/chemistry , Cathepsin B/metabolism , Cations/pharmacology , Electrophoresis, Polyacrylamide Gel , Humans , Hydrogen-Ion Concentration , Hydrolysis , Kallikreins/metabolism , Kininogens/drug effects , Kininogens/metabolism , Molecular Weight , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...