Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(26): 9971-9977, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35708623

ABSTRACT

We report a synthetic strategy that allows for the preparation of sterically encumbered heteroleptic Ru(II)porphyrinates with the desired configuration of stable/inert and weak/labile axial ligands to direct reactions between substrates to exclusively occur at the sterically encumbered face. To demonstrate the method, we describe the synthesis of a strapped-Ru(II)porphyrinate bearing a stable/inert triphenylphosphine (PPh3) bulky axial ligand coordinated exo to the central cavity and a weak/labile methanol molecule coordinated at the internal axial position. With this axial ligand configuration, the reported Ru(II)porphyrinate exclusively promotes carbene transfer reactions to olefins through the central cavity, which has been verified by the selective formation of cycloprane-linked [2]rotaxanes.


Subject(s)
Alkenes , Ligands , Models, Molecular
2.
Nat Commun ; 11(1): 6370, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311502

ABSTRACT

Selectivity in N-H and S-H carbene insertion reactions promoted by Ru(II)porphyrinates currently requires slow addition of the diazo precursor and large excess of the primary amine and thiol substrates in the reaction medium. Such conditions are necessary to avoid the undesirable carbene coupling and/or multiple carbene insertions. Here, the authors demonstrate that the synergy between the steric shielding provided by a Ru(II)porphyrinate-based macrocycle with a relatively small central cavity and the kinetic stabilization of otherwise labile coordinative bonds, warranted by formation of the mechanical bond, enables single carbene insertions to occur with quantitative efficiency and perfect selectivity even in the presence of a large excess of the diazo precursor and stoichiometric amounts of the primary amine and thiol substrates. As the Ru(II)porphyrinate-based macrocycle bears a confining nanospace and alters the product distribution of the carbene insertion reactions when compared to that of its acyclic version, the former therefore functions as a nanoreactor.

3.
Chemistry ; 26(35): 7808-7822, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32022364

ABSTRACT

A 5,15-bis(1,1'-biphenyl)porphyrin-based molecular clip covalently connected to a ditopic aliphatic ester loop moiety yields a semi-rigid macrocycle with a well-defined cavity. The resulting macrocycle fits the structural requirements for the preparation of porphyrinates capable of promoting formation of C-C bonds. To demonstrate the usefulness of porphyrin-based macrocycles, an active-metal-template synthesis of rotaxanes through a redox non-innocent carbene transfer reaction is described. Coordination of CoII ions into the porphyrin subunit followed by addition of appropriate monodentate nitrogen-based additives to function as axial ligands enables the radical carbene transfer reactions to styrene derivatives to occur exclusively through the cavity of the macrocycle to afford cyclopropane-linked rotaxanes in excellent 95 % yield. Investigation of the product distribution afforded from the rotaxane assembly reaction reveals how the redox cooperative action between the carbene species and the CoII ions can be manipulated to gain control over the radical-type mechanism to favor the productive rotaxane forming process.

4.
Angew Chem Int Ed Engl ; 57(29): 8979-8983, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29847693

ABSTRACT

A CoII /porphyrinate-based macrocycle in the presence of a 3,5-diphenylpyridine axial ligand functions as an endotopic ligand to direct the assembly of [2]rotaxanes from diazo and styrene half-threads, by radical-carbene-transfer reactions, in excellent 95 % yield. The method reported herein applies the active-metal-template strategy to include radical-type activation of ligands by the metal-template ion during the organometallic process which ultimately yields the mechanical bond. A careful quantitative analysis of the product distribution afforded from the rotaxane self-assembly reaction shows that the CoII /porphyrinate subunit is still active after formation of the mechanical bond and, upon coordination of an additional diazo half-thread derivative, promotes a novel intercomponent C-H insertion reaction to yield a new rotaxane-like species. This unexpected intercomponent C-H insertion illustrates the distinct reactivity brought to the CoII /porphyrinate catalyst by the mechanical bond.

5.
Chemistry ; 20(43): 13965-75, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25213086

ABSTRACT

Two new dinuclear copper(II) metallacyclophanes with 1,4-disubstituted 9,10-anthraquinonebis(oxamate) bridging ligands are reported that can reversibly take and release electrons at the redox-active ligand and metal sites, respectively, to give the corresponding mono- and bis(semiquinonate and/or catecholate) Cu(II)2 species and mixed-valent Cu(II)/Cu(III) and high-valent Cu(III)2 ones. Density functional calculations allow us to give further insights on the dual ligand- and metal-based character of the redox processes in this novel family of antiferromagnetically coupled di- copper(II) anthraquinophanes. This unique ability for charge storage could be the basis for the development of new kinds of molecular spintronic devices, referred to as molecular magnetic capacitors (MMCs).


Subject(s)
Anthraquinones/chemistry , Copper/chemistry , Electrons , Models, Molecular , Oxidation-Reduction
6.
Dalton Trans ; 43(39): 14586-95, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25135421

ABSTRACT

Two new trinuclear copper(ii) complexes without end-capping ligands, (Bu4N)2[Cu(dmso)2{Cu(dnopba)(dmso)}2] () and (Bu4N)2[Cu(dmso)2{Cu(dcopba)(dmso)}2] () [dnopba = 4,5-dinitro-ortho-phenylenebis(oxamate), dcopba = 4,5-dichloro-ortho-phenylenebis(oxamate), Bu4N(+) = tetra-n-butylammonium and dmso = dimethylsulfoxide], were synthesized and their structures were determined by single crystal X-ray diffraction. The crystal structures of and consist of two outer bis(oxamato)(dmso)cuprate(ii) units which act as bidentate ligands toward a trans-bis(dmso)copper(ii) inner entity leading to centrosymmetric tricopper(ii) complexes with copper-copper separations across the oxamate bridges of 5.1916(3) () and 5.1776(3) Å (). The peripheral copper(ii) ions in and are five-coordinate in somewhat distorted square pyramidal environments with a dmso molecule filling the apical position whereas the inner copper(ii) ion is six-coordinate in an elongated octahedral environment with two dmso molecules in the axial sites. The investigation of their magnetic properties in the temperature range 2.0-300 K shows the occurrence of a strong intramolecular antiferromagnetic coupling between the copper(ii) ions through the oxamate bridges [J1 = -296(1) () and -334(1) cm(-1) (), the Hamiltonian being defined as H = -J1(SCu2·SCu1 + SCu2·SCu1')], which leads to a low-lying spin doublet at low temperatures. Density functional theory calculations (DFT) have been used to substantiate these magnetic couplings and also to analyse the influence exerted on these interactions by the type of substituent at the 4,5-positions from the phenylene ring of the bis(oxamate) ligand.

7.
Inorg Chem ; 53(11): 5759-71, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24828822

ABSTRACT

A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(µ-H2O)(µ-pz)2(µ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(µ-H2O)(µ-3-Mepz)2(µ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(µ-OH)(µ-3,5-Me2pz)(µ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1) or five-coordinate (2) in axially elongated, octahedral (1) or square-pyramidal (2) environments in 1 and 2, whereas they are five-coordinate in distorted trigonal-bipyramidal surroundings in 3. The values of the copper-copper separations across the bpm/pyrazolate bridges are 5.5442(7)/3.3131(6) (1), 5.538(1)/3.235(1) (2), and 5.7673(7)/3.3220(6) Å (3). The magnetic properties of 1-3 have been investigated in the temperature range of 25-300 K. The analysis of their magnetic susceptibility data through the isotropic Hamiltonian for an alternating antiferromagnetic copper(II) chain model [H = -J∑i=1-n/2 (S2i·S2i-1 + αS2i·S2i+1), with α = J'/J and Si = SCu = 1/2] reveals the presence of a strong to moderate antiferromagnetic coupling through the bis(pyrazolate)(aqua) [-J = 217 (1) and 215 cm(-1) (2)] and (pyrazolate)(hydroxo) bridges [-J = 153 cm(-1) (3)], respectively, whereas a strong to weak antiferromagnetic coupling occurs through the bis-bidentate bpm [-J' = 211 (1), 213 (2), and 44 cm(-1) (3)]. A simple orbital analysis of the magnetic exchange interaction within the bpm- and pyrazolate-bridged dicopper(II) fragments of 1-3 visualizes the σ-type pathways involving the (dx(2)-y(2)) (1 and 2) or d(z(2)) (3) magnetic orbitals on each metal ion, which account for the variation of the magnetic properties in these three novel examples of one-dimensional copper(II) compounds with regular alternating intrachain antiferromagnetic interactions.

8.
Chem Commun (Camb) ; 50(44): 5840-2, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24759947

ABSTRACT

A new chloro-bridged heterobimetallic Cu(II)Re(IV) chain of formula {Cu(pyim)(Him)2ReCl6}n·MeCN (·MeCN) has been prepared and magnetostructurally characterised. Compound is the first example of the [Re(IV)Cl6](2-) anion acting as a metalloligand towards a paramagnetic metal ion.

9.
Dalton Trans ; 42(47): 16510-7, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24008774

ABSTRACT

The reaction of Mn(ClO4)2·6H2O, a derivatised phenolic oxime (R-saoH2) and the ligand tris(2-pyridylmethyl)amine (tpa) in a basic alcoholic solution leads to the formation of a family of cluster compounds of general formula [Mn(III)2O(R-sao)(tpa)2](ClO4)2 (1, R = H; 2, R = Me; 3, R = Et; 4, R = Ph). The structure is that of a simple, albeit asymmetric, dimer of two Mn(III) ions bridged through one µ-O(2-) ion and the -N-O- moiety of the phenolic oxime. Magnetometry reveals that the exchange interaction between the two Mn(III) ions in complexes 1, 3 and 4 is antiferromagnetic, but that for complex 2 is ferromagnetic. A theoretically developed magneto-structural correlation reveals that the dominant structural parameter influencing the sign and magnitude of the pairwise interaction is the dihedral Mn-O-N-Mn (torsion) angle. A linear correlation is found, with the magnitude of J varying significantly as the dihedral angle is altered. As the torsion angle increases the AF exchange decreases, matching the experimentally determined data. DFT calculations reveal that the dyz|π*|dyz interaction decreases as the dihedral angle increases leading to ferromagnetic coupling at larger angles.

SELECTION OF CITATIONS
SEARCH DETAIL
...