Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292931

ABSTRACT

The Wnt/ß-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer's disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3ß S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-ß oligomers (AßO) in mice. Finally, quercitrin rescues AßO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/ß-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Wnt Signaling Pathway , Amyloid beta-Peptides/pharmacology , beta Catenin/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Alzheimer Disease/pathology , Quercetin/pharmacology , Quercetin/therapeutic use
2.
Neuropharmacology ; 209: 109023, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35257690

ABSTRACT

Acute neurological alterations have been associated with SARS-CoV-2 infection. Additionally, it is becoming clear that coronavirus disease 2019 (COVID-19) survivors may experience long-term neurological abnormalities, including cognitive deficits and mood alterations. The mechanisms underlying acute and long-term impacts of COVID-19 in the brain are being actively investigated. Due to the heterogeneous manifestations of neurological outcomes, it is possible that different mechanisms operate following SARS-CoV-2 infection, which may include direct brain infection by SARS-CoV-2, mechanisms resulting from hyperinflammatory systemic disease, or a combination of both. Inflammation is a core feature of COVID-19, and both central and systemic inflammation are known to lead to acute and persistent neurological alterations in other diseases. Here, we review evidence indicating that COVID-19 is associated with neuroinflammation, along with blood-brain barrier dysfunction. Similar neuroinflammatory signatures have been associated with Alzheimer's disease and major depressive disorder. Current evidence demonstrates that patients with pre-existing cognitive and neuropsychiatric deficits show worse outcomes upon infection by SARS-CoV-2 and, conversely, COVID-19 survivors may be at increased risk of developing dementia and mood disorders. Considering the high prevalence of COVID-19 patients that recovered from infection in the world and the alarming projections for the prevalence of dementia and depression, investigation of possible molecular similarities between those diseases may shed light on mechanisms leading to long-term neurological abnormalities in COVID-19 survivors.


Subject(s)
COVID-19/complications , Cognitive Dysfunction/etiology , Depression/etiology , Neuroinflammatory Diseases/physiopathology , Affect/physiology , Blood-Brain Barrier/metabolism , COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , Depression/physiopathology , Humans , Inflammation/physiopathology , SARS-CoV-2 , Virus Diseases/complications
3.
Behav Brain Res ; 419: 113680, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34822947

ABSTRACT

Conversion of the cellular prion protein (PrPC) into the scrapie form (PrPSc) is the leading step to the development of transmissible spongiform encephalopathies (TSEs), still incurable neurodegenerative disorders. Interaction of PrPC with cellular and synthetic ligands that induce formation of scrapie-like conformations has been deeply investigated in vitro. Different nucleic acid (NA) sequences bind PrP and convert it to ß-sheet-rich or unfolded species; among such NAs, a 21-mer double-stranded DNA, D67, was shown to induce formation of PrP aggregates that were cytotoxic. However, in vivo effects of these PrP-DNA complexes were not explored. Herein, aggregates of recombinant full-length PrP (rPrP23-231) induced by interaction with the D67 aptamer were inoculated into the lateral ventricle of Swiss mice and acute effects were investigated. The aggregates had no influence on emotional, locomotor and motor behavior of mice. In contrast, mice developed cognitive impairment and hippocampal synapse loss, which was accompanied by intense activation of glial cells in this brain region. Our results suggest that the i.c.v. injection of rPrP:D67 aggregates is an interesting model to study the neurotoxicity of aggregated PrP in vivo, and that glial cell activation may be an important step for behavioral and cognitive dysfunction in prion diseases.


Subject(s)
Aptamers, Nucleotide/pharmacology , Behavior, Animal/drug effects , Cognitive Dysfunction/chemically induced , Hippocampus/drug effects , Prion Proteins/pharmacology , Synapses/drug effects , Animals , Disease Models, Animal , Lateral Ventricles/drug effects , Male , Mice
4.
PLoS Negl Trop Dis ; 15(11): e0009907, 2021 11.
Article in English | MEDLINE | ID: mdl-34735450

ABSTRACT

Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.


Subject(s)
Yellow Fever Vaccine/administration & dosage , Zika Virus Infection/prevention & control , Zika Virus/physiology , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Humans , Immunity, Cellular , Interferon-gamma/immunology , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology , Vaccination , Vero Cells , Yellow Fever/virology , Yellow fever virus/genetics , Yellow fever virus/immunology , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology
5.
Brain Behav Immun ; 95: 287-298, 2021 07.
Article in English | MEDLINE | ID: mdl-33838250

ABSTRACT

Sepsis survivors show long-term impairments, including alterations in memory and executive function. Evidence suggests that systemic inflammation contributes to the progression of Alzheimers disease (AD), but the mechanisms involved in this process are still unclear. Boosted (trained) and diminished (tolerant) innate immune memory has been described in peripheral immune cells after sepsis. However, the occurrence of long-term innate immune memory in the post-septic brain is fully unexplored. Here, we demonstrate that sepsis causes long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to Aß oligomers (AßO), central neurotoxins found in AD. Hippocampal microglia from sepsis-surviving mice shift to an amoeboid/phagocytic morphological profile when exposed to low amounts of AßO, and this event was accompanied by the upregulation of several pro-inflammatory proteins (IL-1ß, IL-6, INF-γ and P2X7 receptor) in the mouse hippocampus, suggesting that a trained innate immune memory occurs in the brain after sepsis. Brain exposure to low amounts of AßO increased microglial phagocytic ability against hippocampal synapses. Pharmacological blockage of brain phagocytic cells or microglial depletion, using minocycline and colony stimulating factor 1 receptor inhibitor (PLX3397), respectively, prevents cognitive dysfunction induced by AßO in sepsis-surviving mice. Altogether, our findings suggest that sepsis induces a long-lasting trained innate immune memory in the mouse brain, leading to an increased susceptibility to AßO-induced neurotoxicity and cognitive impairment.


Subject(s)
Alzheimer Disease , Sepsis , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Immunologic Memory , Mice , Microglia/metabolism
6.
Mol Neurobiol ; 57(9): 3814-3826, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32592125

ABSTRACT

Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation. However, the role of the purine nucleoside guanosine in neurogenesis remains unclear. Here, we examined the effect of guanosine by using the neurosphere assay derived from neural stem cells of adult mice. We found that continuous treatment with guanosine increased the number of neurospheres, neural stem cell proliferation, and neuronal differentiation. The effect of guanosine to increase the number of neurospheres was reduced by removing adenosine from the culture medium. We next traced the neurogenic effect of guanosine in vivo. The intraperitoneal treatment of adult C57BL/6 mice with guanosine (8 mg/kg) for 26 days increased the number of dividing bromodeoxyuridine (BrdU)-positive cells and also increased neurogenesis, as identified by measuring doublecortin (DCX)-positive cells in the dentate gyrus (DG) of the hippocampus. Antidepressant-like behavior in adult mice accompanied the guanosine-induced neurogenesis in the DG. These results provide new evidence of a pro-neurogenic effect of guanosine on neural stem/progenitor cells, and it was associated in vivo with antidepressant-like effects.


Subject(s)
Aging/physiology , Guanosine/pharmacology , Hippocampus/cytology , Neural Stem Cells/cytology , Neurogenesis , Animals , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dentate Gyrus/cytology , Doublecortin Protein , Female , Male , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects
7.
Neurochem Int ; 138: 104758, 2020 09.
Article in English | MEDLINE | ID: mdl-32439533

ABSTRACT

α-Synuclein protein (α-syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. These diseases are characterized by abnormal motor symptoms, such as tremor at rest, slowness of movement, rigidity of posture, and bradykinesia. Histopathological features of PD include preferential loss of dopaminergic neurons in the substantia nigra and formation of fibrillar intraneuronal inclusions called Lewy bodies and Lewy neurites, which are composed primarily of the α-syn protein. Currently, it is well accepted that α-syn oligomers (αSO) are the main toxic agent responsible for the etiology of PD. Glutamatergic excitotoxicity is associated with several neurological disorders, including PD. Excess glutamate in the synaptic cleft can be taken up by the astrocytic glutamate transporters GLAST and GLT-1. Although this event is the main defense against glutamatergic excitotoxicity, the molecular mechanisms that regulate this process have not yet been investigated in an early sporadic model of synucleinopathy. Here, using an early sporadic model of synucleinopathy, we demonstrated that the treatment of astrocytes with αSO increased glutamate uptake. This was associated with higher levels of GLAST and GLT-1 in astrocyte cultures and in a mouse model of synucleinopathy 24 h and 45 days after inoculation with αSO, respectively. Pharmacological inhibition of the TGF-ß1 (transforming growth factor beta 1) pathway in vivo reverted GLAST/GLT-1 enhancement induced by αSO injection. Therefore, our study describes a new neuroprotective role of astrocytes in an early sporadic model of synucleinopathy and sheds light on the mechanisms of glutamate transporter regulation for neuroprotection against glutamatergic excitotoxicity in synucleinopathy.


Subject(s)
Amino Acid Transport System X-AG/metabolism , Astrocytes/metabolism , Disease Models, Animal , Synucleinopathies/metabolism , alpha-Synuclein/toxicity , Animals , Animals, Newborn , Astrocytes/drug effects , Astrocytes/pathology , Cells, Cultured , Female , Mice , Pregnancy , Synucleinopathies/chemically induced , Synucleinopathies/pathology , alpha-Synuclein/chemistry
8.
Nat Commun ; 10(1): 3890, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488835

ABSTRACT

Neurological complications affecting the central nervous system have been reported in adult patients infected by Zika virus (ZIKV) but the underlying mechanisms remain unknown. Here, we report that ZIKV replicates in human and mouse adult brain tissue, targeting mature neurons. ZIKV preferentially targets memory-related brain regions, inhibits hippocampal long-term potentiation and induces memory impairment in adult mice. TNF-α upregulation, microgliosis and upregulation of complement system proteins, C1q and C3, are induced by ZIKV infection. Microglia are found to engulf hippocampal presynaptic terminals during acute infection. Neutralization of TNF-α signaling, blockage of microglial activation or of C1q/C3 prevent synapse and memory impairment in ZIKV-infected mice. Results suggest that ZIKV induces synapse and memory dysfunction via aberrant activation of TNF-α, microglia and complement. Our findings establish a mechanism by which ZIKV affects the adult brain, and point to the need of evaluating cognitive deficits as a potential comorbidity in ZIKV-infected adults.


Subject(s)
Brain/virology , Synapses/virology , Virus Replication , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Behavior, Animal , Brain/metabolism , Brain/pathology , Complement System Proteins/metabolism , Disease Models, Animal , Hippocampus/metabolism , Humans , Inflammation , Learning , Male , Memory , Memory Disorders , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Neurons/virology , Presynaptic Terminals/metabolism , Receptors, Interleukin-1 Type I/genetics , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Cell Death Dis ; 10(4): 323, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30975983

ABSTRACT

Harmful environmental stimuli during critical stages of development can profoundly affect behavior and susceptibility to diseases. Alzheimer disease (AD) is the most frequent neurodegenerative disease, and evidence suggest that inflammatory conditions act cumulatively, contributing to disease onset. Here we investigated whether infection early in life can contribute to synapse damage and cognitive impairment induced by amyloid-ß oligomers (AßOs), neurotoxins found in AD brains. To this end, wild-type mice were subjected to neonatal (post-natal day 4) infection by Escherichia coli (1 × 104 CFU/g), the main cause of infection in low-birth-weight premature infants in the US. E. coli infection caused a transient inflammatory response in the mouse brain starting shortly after infection. Although infected mice performed normally in behavioral tasks in adulthood, they showed increased susceptibility to synapse damage and memory impairment induced by low doses of AßOs (1 pmol; intracerebroventricular) in the novel object recognition paradigm. Using in vitro and in vivo approaches, we show that microglial cells from E. coli-infected mice undergo exacerbated activation when exposed to low doses of AßOs. In addition, treatment of infected pups with minocycline, an antibiotic that inhibits microglial pro-inflammatory polarization, normalized microglial response to AßOs and restored normal susceptibility of mice to oligomer-induced cognitive impairment. Interestingly, mice infected with by E. coli (1 × 104 CFU/g) during adolescence (post-natal day 21) or adulthood (post-natal day 60) showed normal cognitive performance even in the presence of AßOs (1 pmol), suggesting that only infections at critical stages of development may lead to increased susceptibility to amyloid-ß-induced toxicity. Altogether, our findings suggest that neonatal infections can modulate microglial response to AßOs into adulthood, thus contributing to amyloid-ß-induced synapse damage and cognitive impairment.


Subject(s)
Cognitive Dysfunction/microbiology , Encephalitis/microbiology , Escherichia coli Infections/complications , Microglia/metabolism , Synapses/drug effects , Amyloid beta-Peptides , Animals , Animals, Newborn , Brain/growth & development , Brain/immunology , Brain/microbiology , Cells, Cultured , Cognitive Dysfunction/chemically induced , Disease Susceptibility/etiology , Female , Male , Mice , Microglia/cytology , Microglia/drug effects , Synapses/metabolism , Synapses/pathology , Time Factors
10.
Pharmaceuticals (Basel) ; 12(2)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999590

ABSTRACT

Zika virus (ZIKV) infection was historically considered a disease with mild symptoms and no major consequences to human health. However, several long-term, late onset, and chronic neurological complications, both in congenitally-exposed babies and in adult patients, have been reported after ZIKV infection, especially after the 2015 epidemics in the American continent. The development or severity of these conditions cannot be fully predicted, but it is possible that genetic, epigenetic, and environmental factors may contribute to determine ZIKV infection outcomes. This reinforces the importance that individuals exposed to ZIKV are submitted to long-term clinical surveillance and highlights the urgent need for the development of therapeutic approaches to reduce or eliminate the neurological burden of infection. Here, we review the epidemiology of ZIKV-associated neurological complications and the role of factors that may influence disease outcome. Moreover, we discuss experimental and clinical evidence of drugs that have shown promising results in vitro or in vitro against viral replication and and/or ZIKV-induced neurotoxicity.

11.
J Neurochem ; 150(2): 138-157, 2019 07.
Article in English | MEDLINE | ID: mdl-31009074

ABSTRACT

Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed. Astrocytes are essential to several steps of synapse formation and function, including secretion of synaptogenic factors, control of synaptic elimination and stabilization, secretion of neural/glial modulators, and modulation of extracellular ions, and neurotransmitter levels in the synaptic cleft. Here, we show that αSO induced the astrocyte reactivity and enhanced the synaptogenic capacity of human and murine astrocytes by increasing the levels of the known synaptogenic molecule transforming growth factor beta 1 (TGF-ß1). Moreover, intracerebroventricular injection of αSO in mice increased the number of astrocytes, the density of excitatory synapses, and the levels of TGF-ß1 in the striatum of injected animals. Inhibition of TGF-ß1 signaling impaired the effect of the astrocyte-conditioned medium on glutamatergic synapse formation in vitro and on striatal synapse formation in vivo, whereas addition of TGF-ß1 protected mesencephalic neurons against synapse loss triggered by αSO. Together, our data suggest that αSO have important effects on astrocytic functions and describe TGF-ß1 as a new endogenous astrocyte-derived molecule involved in the increase in striatal glutamatergic synaptic density present in early stages of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14514.


Subject(s)
Astrocytes/metabolism , Parkinsonian Disorders/metabolism , Synapses/metabolism , Transforming Growth Factor beta1/metabolism , alpha-Synuclein/metabolism , Animals , Disease Models, Animal , Humans , Mice , Neurogenesis/physiology , Signal Transduction/physiology
12.
Mol Neurobiol ; 55(1): 435-444, 2018 01.
Article in English | MEDLINE | ID: mdl-27966074

ABSTRACT

Sepsis survivors frequently develop late cognitive impairment. Because little is known on the mechanisms of post-septic memory deficits, there are no current effective approaches to prevent or treat such symptoms. Here, we subjected mice to severe sepsis induced by cecal ligation and puncture (CLP) and evaluated the sepsis-surviving animals in the open field, novel object recognition (NOR), and step-down inhibitory avoidance (IA) task at different times after surgery. Post-septic mice (30 days post-surgery) failed in the NOR and IA tests but exhibited normal performance when re-evaluated 45 days after surgery. Cognitive impairment in post-septic mice was accompanied by reduced hippocampal levels of proteins involved in synaptic plasticity, including synaptophysin, cAMP response element-binding protein (CREB), CREB phosphorylated at serine residue 133 (CREBpSer133), and GluA1 phosphorylated at serine residue 845 (GluA1pSer845). Expression of tumor necrosis factor α (TNF-α) was increased and brain insulin signaling was disrupted, as indicated by increased hippocampal IRS-1 phosphorylation at serine 636 (IRS-1pSer636) and decreased phosphorylation of IRS-1 at tyrosine 465 (IRS-1pTyr465), in the hippocampus 30 days after CLP. Phosphorylation of Akt at serine 473 (AktpSer473) and of GSK3 at serine 9 (GSK3ßpSer9) were also decreased in hippocampi of post-septic animals, further indicating that brain insulin signaling is disrupted by sepsis. We then treated post-septic mice with liraglutide, a GLP-1 receptor agonist with insulinotropic activity, or TDZD-8, a GSK3ß inhibitor, which rescued NOR memory. In conclusion, these results establish that hippocampal inflammation and disrupted insulin signaling are induced by sepsis and are linked to late memory impairment in sepsis survivors.


Subject(s)
Brain/metabolism , Cognitive Dysfunction/metabolism , Insulin/metabolism , Sepsis/metabolism , Signal Transduction/physiology , Animals , Brain/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Exploratory Behavior/physiology , Male , Mice , Sepsis/complications , Sepsis/pathology
13.
Behav Brain Res ; 333: 150-160, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28668282

ABSTRACT

Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening.


Subject(s)
Behavioral Symptoms/etiology , Brain/drug effects , Olfaction Disorders/etiology , Parkinson Disease/complications , Parkinson Disease/etiology , alpha-Synuclein/toxicity , Animals , Brain/metabolism , Cells, Cultured , Discrimination, Psychological/drug effects , Disease Models, Animal , Embryo, Mammalian , Humans , Injections, Intraventricular , Male , Maze Learning/drug effects , Mesencephalon/cytology , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Peptides/toxicity , Recognition, Psychology/drug effects , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
14.
J Biol Chem ; 292(18): 7327-7337, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28283575

ABSTRACT

Brain accumulation of the amyloid-ß protein (Aß) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aß oligomers (AßOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AßOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AßOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AßOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AßO binding to hippocampal neurons and prevented AßO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AßOs in mice. The results indicate that Nrx2α and NL1 are targets of AßOs and that prevention of this interaction reduces the deleterious impact of AßOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AßOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Protein Aggregation, Pathological/metabolism , Synapses/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Brain/pathology , Cell Adhesion Molecules, Neuronal/genetics , Cells, Cultured , Disease Models, Animal , Humans , Male , Mice , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Rats , Rats, Wistar , Synapses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...