Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Elife ; 122023 08 31.
Article in English | MEDLINE | ID: mdl-37650378

ABSTRACT

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Subject(s)
Caenorhabditis elegans , Chromosomal Proteins, Non-Histone , Chromosome Segregation , Animals , Caenorhabditis elegans/genetics , Cell Cycle Proteins , Chromatids , Chromosomal Proteins, Non-Histone/genetics , Cohesins
2.
PLoS Genet ; 18(10): e1010136, 2022 10.
Article in English | MEDLINE | ID: mdl-36279281

ABSTRACT

Accurate chromosome segregation requires a cohesin-mediated physical attachment between chromosomes that are to be segregated apart, and a bipolar spindle with microtubule plus ends emanating from exactly two poles toward the paired chromosomes. We asked whether the striking bipolar structure of C. elegans meiotic chromosomes is required for bipolarity of acentriolar female meiotic spindles by time-lapse imaging of mutants that lack cohesion between chromosomes. Both a spo-11 rec-8 coh-4 coh-3 quadruple mutant and a spo-11 rec-8 double mutant entered M phase with separated sister chromatids lacking any cohesion. However, the quadruple mutant formed an apolar spindle whereas the double mutant formed a bipolar spindle that segregated chromatids into two roughly equal masses. Residual non-cohesive COH-3/4-dependent cohesin on separated sister chromatids of the double mutant was sufficient to recruit haspin-dependent Aurora B kinase, which mediated bipolar spindle assembly in the apparent absence of chromosomal bipolarity. We hypothesized that cohesin-dependent Aurora B might activate or inhibit spindle assembly factors in a manner that would affect their localization on chromosomes and found that the chromosomal localization patterns of KLP-7 and CLS-2 correlated with Aurora B loading on chromosomes. These results demonstrate that cohesin is essential for spindle assembly and chromosome segregation independent of its role in sister chromatid cohesion.


Subject(s)
Caenorhabditis elegans , Chromosomal Proteins, Non-Histone , Animals , Female , Caenorhabditis elegans/genetics , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/genetics , Meiosis/genetics , Chromatids/genetics , Chromosome Segregation/genetics , Spindle Apparatus/genetics , Cohesins
3.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36137547

ABSTRACT

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Subject(s)
Caenorhabditis elegans Proteins , DNA Breaks, Double-Stranded , Animals , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA Repair , Meiosis , DNA/metabolism , Nuclear Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
4.
PLoS Genet ; 18(1): e1010025, 2022 01.
Article in English | MEDLINE | ID: mdl-35081133

ABSTRACT

Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1's role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.


Subject(s)
Aminopeptidases/genetics , Caenorhabditis elegans/genetics , Genomic Instability , Aminopeptidases/metabolism , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Cycle , Cell Proliferation , DNA Replication , Proline/metabolism
5.
Mol Cell ; 81(5): 1058-1073.e7, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33421363

ABSTRACT

Homologous recombination (HR) is an essential DNA double-strand break (DSB) repair mechanism, which is frequently inactivated in cancer. During HR, RAD51 forms nucleoprotein filaments on RPA-coated, resected DNA and catalyzes strand invasion into homologous duplex DNA. How RAD51 displaces RPA and assembles into long HR-proficient filaments remains uncertain. Here, we employed single-molecule imaging to investigate the mechanism of nematode RAD-51 filament growth in the presence of BRC-2 (BRCA2) and RAD-51 paralogs, RFS-1/RIP-1. BRC-2 nucleates RAD-51 on RPA-coated DNA, whereas RFS-1/RIP-1 acts as a "chaperone" to promote 3' to 5' filament growth via highly dynamic engagement with 5' filament ends. Inhibiting ATPase or mutation in the RFS-1 Walker box leads to RFS-1/RIP-1 retention on RAD-51 filaments and hinders growth. The rfs-1 Walker box mutants display sensitivity to DNA damage and accumulate RAD-51 complexes non-functional for HR in vivo. Our work reveals the mechanism of RAD-51 nucleation and filament growth in the presence of recombination mediators.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Carrier Proteins/genetics , DNA, Helminth/genetics , DNA-Binding Proteins/genetics , Rad51 Recombinase/genetics , Recombinational DNA Repair , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , DNA Breaks, Double-Stranded , DNA, Helminth/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Protein Binding , Rad51 Recombinase/metabolism , Replication Protein A/genetics , Replication Protein A/metabolism , Signal Transduction , Single Molecule Imaging
6.
PLoS Genet ; 16(11): e1008968, 2020 11.
Article in English | MEDLINE | ID: mdl-33175901

ABSTRACT

In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved "closure motif" region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Synaptonemal Complex/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosome Pairing , Chromosome Segregation , Chromosomes , Meiosis/physiology , Phosphorylation , Prophase/physiology , Protein Domains
7.
Genetics ; 213(1): 79-96, 2019 09.
Article in English | MEDLINE | ID: mdl-31345995

ABSTRACT

Proper partitioning of homologous chromosomes during meiosis relies on the coordinated execution of multiple interconnected events: Homologs must locate, recognize, and align with their correct pairing partners. Further, homolog pairing must be coupled to assembly of the synaptonemal complex (SC), a meiosis-specific tripartite structure that maintains stable associations between the axes of aligned homologs and regulates formation of crossovers between their DNA molecules to create linkages that enable their segregation. Here, we identify HAL-3 (Homolog Alignment 3) as an important player in coordinating these key events during Caenorhabditis elegans meiosis. HAL-3, and the previously identified HAL-2, are interacting and interdependent components of a protein complex that localizes to the nucleoplasm of germ cells. hal-3 (or hal-2) mutants exhibit multiple meiotic prophase defects including failure to establish homolog pairing, inappropriate loading of SC subunits onto unpaired chromosome axes, and premature loss of synapsis checkpoint protein PCH-2. Further, loss of hal function results in misregulation of the subcellular localization and activity of Polo-like kinases (PLK-1 and PLK-2), which dynamically localize to different defined subnuclear sites during wild-type prophase progression to regulate distinct cellular events. Moreover, loss of PLK-2 activity partially restores tripartite SC structure in a hal mutant background, suggesting that the defect in pairwise SC assembly in hal mutants reflects inappropriate PLK activity. Together, our data support a model in which the nucleoplasmic HAL-2/HAL-3 protein complex constrains both localization and activity of meiotic Polo-like kinases, thereby preventing premature interaction with stage-inappropriate targets.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , Meiosis , Nuclear Proteins/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Mutation , Nuclear Proteins/genetics , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Synaptonemal Complex/genetics , Synaptonemal Complex/metabolism
8.
Dev Cell ; 48(6): 793-810.e6, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30713076

ABSTRACT

Piwi-interacting RNAs (piRNAs) are important for genome regulation across metazoans, but their biogenesis evolves rapidly. In Caenorhabditis elegans, piRNA loci are clustered within two 3-Mb regions on chromosome IV. Each piRNA locus possesses an upstream motif that recruits RNA polymerase II to produce an ∼28 nt primary transcript. We used comparative epigenomics across nematodes to gain insight into the origin, evolution, and mechanism of nematode piRNA biogenesis. We show that the piRNA upstream motif is derived from core promoter elements controlling snRNA transcription. We describe two alternative modes of piRNA organization in nematodes: in C. elegans and closely related nematodes, piRNAs are clustered within repressive H3K27me3 chromatin, while in other species, typified by Pristionchus pacificus, piRNAs are found within introns of active genes. Additionally, we discover that piRNA production depends on sequence signals associated with RNA polymerase II pausing. We show that pausing signals synergize with chromatin to control piRNA transcription.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Chromatin/metabolism , Epigenomics , RNA Polymerase II/metabolism , RNA, Small Interfering/biosynthesis , Animals , Base Sequence , Evolution, Molecular , Genetic Loci , Nucleotide Motifs/genetics , RNA, Small Interfering/genetics , Transcription, Genetic
9.
Nat Commun ; 9(1): 3558, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158624

ABSTRACT

The original version of this Article contained an error in the spelling of the author Ambrosius P. Snijders, which was incorrectly given as Ambrosious P. Snijders. This has now been corrected in both the PDF and HTML versions of the Article.

10.
Dev Cell ; 45(2): 212-225.e7, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29689196

ABSTRACT

Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.


Subject(s)
Animals, Genetically Modified/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Chromosome Segregation , Chromosomes/genetics , Meiotic Prophase I/genetics , Nuclear Lamina/pathology , Animals , Animals, Genetically Modified/growth & development , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cell Nucleus/genetics , Cell Nucleus/pathology , Chromosome Pairing , Cytoplasm , Gene Expression Regulation , Nuclear Envelope/genetics , Nuclear Envelope/pathology , Nuclear Lamina/genetics , Phosphorylation
11.
Nat Commun ; 9(1): 834, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483514

ABSTRACT

The formation of haploid gametes from diploid germ cells requires the regulated two-step release of sister chromatid cohesion (SCC) during the meiotic divisions. Here, we show that phosphorylation of cohesin subunit REC-8 by Aurora B promotes SCC release at anaphase I onset in C. elegans oocytes. Aurora B loading to chromatin displaying Haspin-mediated H3 T3 phosphorylation induces spatially restricted REC-8 phosphorylation, preventing full SCC release during anaphase I. H3 T3 phosphorylation is locally antagonized by protein phosphatase 1, which is recruited to chromosomes by HTP-1/2 and LAB-1. Mutating the N terminus of HTP-1 causes ectopic H3 T3 phosphorylation, triggering precocious SCC release without impairing earlier HTP-1 roles in homolog pairing and recombination. CDK-1 exerts temporal regulation of Aurora B recruitment, coupling REC-8 phosphorylation to oocyte maturation. Our findings elucidate a complex regulatory network that uses chromosome axis components, H3 T3 phosphorylation, and cell cycle regulators to ensure accurate chromosome segregation during oogenesis.


Subject(s)
Aurora Kinase B/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Hermaphroditic Organisms/genetics , Oocytes/metabolism , Anaphase , Animals , Aurora Kinase B/metabolism , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromatids/metabolism , Chromatids/ultrastructure , Chromatin/metabolism , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Gene Expression Regulation , Hermaphroditic Organisms/cytology , Hermaphroditic Organisms/metabolism , Histones/genetics , Histones/metabolism , Oocytes/cytology , Oogenesis/genetics , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cohesins
12.
Genes Dev ; 30(21): 2404-2416, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27881602

ABSTRACT

N-terminal acetylation of the first two amino acids on proteins is a prevalent cotranslational modification. Despite its abundance, the biological processes associated with this modification are not well understood. Here, we mapped the pattern of protein N-terminal acetylation in Caenorhabditis elegans, uncovering a conserved set of rules for this protein modification and identifying substrates for the N-terminal acetyltransferase B (NatB) complex. We observed an enrichment for global protein N-terminal acetylation and also specifically for NatB substrates in the nucleus, supporting the importance of this modification for regulating biological functions within this cellular compartment. Peptide profiling analysis provides evidence of cross-talk between N-terminal acetylation and internal modifications in a NAT substrate-specific manner. In vivo studies indicate that N-terminal acetylation is critical for meiosis, as it regulates the assembly of the synaptonemal complex (SC), a proteinaceous structure ubiquitously present during meiosis from yeast to humans. Specifically, N-terminal acetylation of NatB substrate SYP-1, an SC structural component, is critical for SC assembly. These findings provide novel insights into the biological functions of N-terminal acetylation and its essential role during meiosis.


Subject(s)
Caenorhabditis elegans/metabolism , N-Terminal Acetyltransferase B/metabolism , Synaptonemal Complex/metabolism , Acetylation , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Nucleus/metabolism , Meiosis/genetics , Mutation , N-Terminal Acetyltransferase B/genetics , Nuclear Proteins/metabolism , Proteome , Synaptonemal Complex/chemistry , Synaptonemal Complex/genetics
13.
Elife ; 5: e10851, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26841696

ABSTRACT

Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/antagonists & inhibitors , Chromosome Structures , Meiosis , Animals , Caenorhabditis elegans , Cell Cycle Proteins/antagonists & inhibitors , Cohesins
14.
Dev Cell ; 31(4): 503-11, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25455309

ABSTRACT

Proper chromosome segregation during meiosis requires the assembly of the synaptonemal complex (SC) between homologous chromosomes. However, the SC structure itself is indifferent to homology, and poorly understood mechanisms that depend on conserved HORMA-domain proteins prevent ectopic SC assembly. Although HORMA-domain proteins are thought to regulate SC assembly as intrinsic components of meiotic chromosomes, here we uncover a key role for nuclear soluble HORMA-domain protein HTP-1 in the quality control of SC assembly. We show that a mutant form of HTP-1 impaired in chromosome loading provides functionality of an HTP-1-dependent checkpoint that delays exit from homology search-competent stages until all homolog pairs are linked by the SC. Bypassing of this regulatory mechanism results in premature meiotic progression and licensing of homology-independent SC assembly. These findings identify nuclear soluble HTP-1 as a regulator of early meiotic progression, suggesting parallels with the mode of action of Mad2 in the spindle assembly checkpoint.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Chromosome Pairing/genetics , Meiosis/physiology , Signal Transduction/physiology , Synaptonemal Complex/metabolism , Animals , Caenorhabditis elegans/cytology , Chromosome Segregation/physiology , Signal Transduction/genetics
15.
PLoS Genet ; 9(5): e1003497, 2013 May.
Article in English | MEDLINE | ID: mdl-23671424

ABSTRACT

Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans , Chromosome Pairing/genetics , Chromosomes/genetics , Mitochondrial Proteins/genetics , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Cell Nucleus , Meiosis , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Protein Structure, Tertiary , Synaptonemal Complex/genetics
16.
Curr Biol ; 21(17): 1421-30, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21856158

ABSTRACT

BACKGROUND: Chromosome segregation and the repair of DNA double-strand breaks (DSBs) by homologous recombination require cohesin, the protein complex that mediates sister chromatid cohesion (SCC). In addition, cohesin is also required for the integrity of DNA damage checkpoints in somatic cells, where cohesin loading depends on a conserved complex containing the Scc2/Nipbl protein. Although cohesin is required for the completion of meiotic recombination, little is known about how cohesin promotes the repair of meiotic DSBs and about the factors that promote loading of cohesin during meiosis. RESULTS: Here we show that during Caenorhabditis elegans meiosis, loading of cohesin requires SCC-2, whereas the cohesin-related complexes condensin and SMC-5/6 can be loaded by mechanisms independent of both SCC-2 and cohesin. Although the lack of cohesin in scc-2 mutants impairs the repair of meiotic DSBs, surprisingly, the persistent DNA damage fails to trigger an apoptotic response of the conserved pachytene DNA damage checkpoint. Mutants carrying an scc-3 allele that abrogates loading of meiotic cohesin are also deficient in the apoptotic response of the pachytene checkpoint, and both scc-2 and scc-3 mutants fail to recruit the DNA damage sensor 9-1-1 complex onto persistent damage sites during meiosis. Furthermore, we show that meiotic cohesin is also required for the timely loading of the RAD-51 recombinase to irradiation-induced DSBs. CONCLUSIONS: We propose that meiotic cohesin promotes DSB processing and recruitment of DNA damage checkpoint proteins, thus implicating cohesin in the earliest steps of the DNA damage response during meiosis.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , DNA Repair , Meiosis , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Homologous Recombination , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Pachytene Stage , Cohesins
17.
Genes Dev ; 22(20): 2886-901, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18923085

ABSTRACT

Segregation of homologous chromosomes during meiosis depends on linkages (chiasmata) created by crossovers and on selective release of a subset of sister chromatid cohesion at anaphase I. During Caenorhabditis elegans meiosis, each chromosome pair forms a single crossover, and the position of this event determines which chromosomal regions will undergo cohesion release at anaphase I. Here we provide insight into the basis of this coupling by uncovering a large-scale regional change in chromosome axis composition that is triggered by crossovers. We show that axial element components HTP-1 and HTP-2 are removed during late pachytene, in a crossover-dependent manner, from the regions that will later be targeted for anaphase I cohesion release. We demonstrate correspondence in position and number between chiasmata and HTP-1/2-depleted regions and provide evidence that HTP-1/2 depletion boundaries mark crossover sites. In htp-1 mutants, diakinesis bivalents lack normal asymmetrical features, and sister chromatid cohesion is prematurely lost during the meiotic divisions. We conclude that HTP-1 is central to the mechanism linking crossovers with late-prophase bivalent differentiation and defines the domains where cohesion will be protected until meiosis II. Further, we discuss parallels between the pattern of HTP-1/2 removal in response to crossovers and the phenomenon of crossover interference.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Chromatids/physiology , Chromosome Segregation , Meiosis/physiology , Sister Chromatid Exchange/physiology , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Chromosome Pairing , Crossing Over, Genetic , Meiotic Prophase I
18.
Cell Motil Cytoskeleton ; 63(4): 231-43, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16489553

ABSTRACT

Cortactin is an F-actin binding protein that binds to the Arp2/3 complex, stimulates its actin nucleation activity, and inhibits actin filament debranching. Using RNA interference directed against cortactin, we explored the importance of cortactin for several processes involving dynamic actin assembly. Silencing cortactin expression was efficiently achieved in HeLa and NIH 3T3 cells, with less than 5% of cortactin expression in siRNA-treated cells. Surprisingly, endocytosis in HeLa and NIH 3T3 cells, and cell migration rates, were not altered by RNAi-mediated cortactin silencing. Listeria utilizes actin-based motility to move within and spread among mammalian host cells; its actin-clouds and tails recruit cortactin. We explored the role of cortactin during the Listeria life cycle in cortactin "knockdown" NIH 3T3 cells. Interestingly, cortactin siRNA-treated cells showed a significant reduction in the efficiency of the bacteria invasion in NIH 3T3 cells. However, cortactin depletion did not interfere with assembly of Listeria actin clouds or actin tails, or Listeria intracellular motility or speed. Therefore, our findings suggest that cortactin plays a role in Listeria internalization, but not in the formation of actin clouds and tails, or in bacteria intracellular motility.


Subject(s)
Cell Movement , Cortactin/metabolism , Listeria monocytogenes/pathogenicity , Transferrin/pharmacokinetics , Actins/metabolism , Animals , Cortactin/genetics , Cortactin/physiology , Endocytosis/physiology , HeLa Cells , Humans , Listeria monocytogenes/metabolism , Mice , NIH 3T3 Cells , RNA, Small Interfering
19.
Mol Biol Cell ; 15(4): 1666-79, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14742709

ABSTRACT

Actin filaments transiently associate with the endocytic machinery during clathrin-coated vesicle formation. Although several proteins that might mediate or regulate this association have been identified, in vivo demonstration of such an activity has not been achieved. Huntingtin interacting protein 1R (Hip1R) is a candidate cytoskeletal-endocytic linker or regulator because it binds to clathrin and actin. Here, Hip1R levels were lowered by RNA interference (RNAi). Surprisingly, rather than disrupting the transient association between endocytic and cytoskeletal proteins, clathrin-coated structures (CCSs) and their endocytic cargo became stably associated with dynamin, actin, the Arp2/3 complex, and its activator, cortactin. RNAi double-depletion experiments demonstrated that accumulation of the cortical actin-endocytic complexes depended on cortactin. Fluorescence recovery after photobleaching showed that dynamic actin filament assembly can occur at CCSs. Our results provide evidence that Hip1R helps to make the interaction between actin and the endocytic machinery functional and transient.


Subject(s)
Actins/chemistry , Actins/metabolism , DNA-Binding Proteins/genetics , Endocytosis , Actin Cytoskeleton/chemistry , Actin-Related Protein 2 , Actin-Related Protein 3 , Adaptor Proteins, Signal Transducing , Blotting, Western , Cell Nucleus/metabolism , Cortactin , Cytoskeletal Proteins/metabolism , DNA/chemistry , Dynamins/chemistry , Fluorescent Antibody Technique, Indirect , Gene Silencing , Green Fluorescent Proteins , HeLa Cells , Humans , Luminescent Proteins/metabolism , Microfilament Proteins/chemistry , Microscopy, Fluorescence , Phenotype , Propidium/pharmacology , RNA/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Time Factors , Transferrin/chemistry , Transferrin/pharmacokinetics , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...