Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 87, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38189954

ABSTRACT

Modern requirements for 'green label' meat products have led to the design of novel antimicrobial innovations which prioritise quality, safety and longevity. Plasma-functionalised water (PFW), ultraviolet light and natural antimicrobial compositions have been investigated and optimised for control of foodborne pathogens like Campylobacter jejuni and Salmonella enterica serovar Typhimurium. However, given the adaptive mechanisms present in bacteria under external stresses, it is imperative to understand the effect that sublethal treatment may have on the bacterial transcriptome. In this study, Salmonella Typhimurium and C. jejuni were treated with sublethal doses of ultraviolet light, a citrus juice/essential oil marinade, and 'spark' or 'glow' cold plasma generation system-produced PFW. Immediately after treatment, cells were lysed and RNA was extracted and purified. mRNA was converted to cDNA by reverse transcription-PCR and sequenced by an Illumina MiSeq® system. Sequences were filtered and analysed using the Tuxedo workflow. Sublethal treatment of Campylobacter jejuni and Salmonella Typhimurium led to increased immediate cellular and metabolic activity, as well as diversification in protein and metabolic functioning. There was further expression of pathogenesis and virulence-associated traits associated with spark PFW and marinade treatment of Salmonella Typhimurium. However, similar concerns were not raised with glow PFW or UV-treated samples. This study provides science-based evidence of the efficacy of multi-hurdle antimicrobial system using green-label marinades and PFW or UV to inactivate pathogens without upregulating virulence traits in surviving cells. This study will inform policymakers and food industry stakeholders and reinforces the need to incorporate in-line novel technologies to ensure consumer safety. KEY POINTS: • Salmonella and C. jejuni showed increased cell activity in immediate response to stress. • Virulence genes showed increased expression when treated with natural antimicrobials and sPFW. • Reduced immediate transcriptomic response to gPFW and UV treatment indicates lower risk.


Subject(s)
Anti-Infective Agents , Campylobacter jejuni , Meat , Anti-Infective Agents/pharmacology , Campylobacter jejuni/genetics , DNA, Complementary , Fruit and Vegetable Juices
2.
Food Microbiol ; 116: 104365, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37689419

ABSTRACT

This study investigated the combined effect of Ultraviolet (UV) light-emitting diode (LED) technology treatment with refrigerated storage of chicken breast meat over 7 days on Campylobacter jejuni, Salmonella enterica serovar Typhimurium, total viable counts (TVC) and total Enterobacteriaceae counts (TEC). An optimised UV-LED treatment at 280 nm for 6 min decreased inoculated S. Typhimurium and C. jejuni populations by 0.6-0.64 log CFU/g, and TVC and TEC population by 1-1.2 log CFU/g in chicken samples. During a 7-day storage at 4 °C, a 0.73 log reduction in C. jejuni was achieved compared with non-treated samples. Moreover, the UV-LED effectiveness to reduce TVC and TEC during refrigerated storage was compared with a conventional UV lamp and a similar efficiency was observed. The impact of UV-LED and UV lamp devices on the microbial community composition of chicken meat during storage was further examined using 16 S rRNA gene amplicon sequencing. Although similar bacterial reductions were observed for both technologies, the microbial communities were impacted differently. Treatment with the UV conventional lamp increased the proportion of Brochothrix spp. In meat samples, whilst Photobacterium spp. Levels were reduced.


Subject(s)
Campylobacter , Microbiota , Animals , Chickens , Ultraviolet Rays , Enterobacteriaceae , Salmonella typhimurium
3.
Front Nutr ; 8: 628723, 2021.
Article in English | MEDLINE | ID: mdl-34169086

ABSTRACT

Ensuring safe, fresh, and healthy food across the shelf life of a commodity is an ongoing challenge, with the driver to minimize chemical additives and their residues in the food processing chain. High-value fresh protein products such as poultry meat are very susceptible to spoilage due to oxidation and bacterial contamination. The combination of non-thermal processing interventions with nature-based alternatives is emerging as a useful tool for potential adoption for safe poultry meat products. Natural compounds are produced by living organisms that are extracted from nature and can be used as antioxidant, antimicrobial, and bioactive agents and are often employed for other existing purposes in food systems. Non-thermal technology interventions such as high-pressure processing, pulsed electric field, ultrasound, irradiation, and cold plasma technology are gaining increasing importance due to the advantages of retaining low temperatures, nutrition profiles, and short treatment times. The non-thermal unit process can act as an initial obstacle promoting the reduction of microflora, while natural compounds can provide an active obstacle either in addition to processing or during storage time to maintain quality and inhibit and control growth of residual contaminants. This review presents the application of natural compounds along with emerging non-thermal technologies to address risks in fresh poultry meat.

SELECTION OF CITATIONS
SEARCH DETAIL
...