Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 141(1): 157-65, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26568361

ABSTRACT

Mass spectrometry can be used to determine structural information about ions by activating precursors and analysing the resulting series of fragments. Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) is a technique that correlates the mass-to-charge (m/z) ratio of fragment and precursor ions in a single spectrum. 2D FT-ICR MS records the fragmentation of all ions in a sample without the need for isolation. To analyse specific precursors, horizontal cross-sections of the spectrum (fragment ion scans) are taken, providing an alternative to conventional tandem mass spectrometry (MS/MS) experiments. In this work, 2D FT-ICR MS has been used to study the tryptic digest of type I collagen, a large protein. Fragment ion scans have been extracted from the 2D FT-ICR MS spectrum for precursor m/z ratios: 951.81, 850.41, 634.34, and 659.34, and 2D FT-ICR MS spectra are compared with a set of 1D MS/MS spectra using different fragmentation methods. The results show that two-dimensional mass spectrometry excells at MS/MS of complex mixtures, simplifying spectra by eliminating contaminant peaks, and aiding the identification of species in the sample. Currently, with desktop computers, 2D FT-ICR MS is limited by data processing power, a limitation which should be alleviated using cluster parallel computing. In order to explore 2D FT-ICR MS for collagen, with reasonable computing time, the resolution in the fragment ion dimension is limited to 256k data points (compared to 4M data points in 1D MS/MS spectra), but the vertical precursor ion dimension has 4096 lines, so the total data set is 1G data points (4 Gbytes). The fragment ion coverage obtained with a blind, unoptimized 2D FT-ICR MS experiment was lower than conventional MS/MS, but MS/MS information is obtained for all ions in the sample regardless of selection and isolation. Finally, although all 2D FT-ICR MS peak assignments were made with the aid of 1D FT-ICR MS data, these results demonstrate the promise of 2D FT-ICR MS as a technique for studying complex protein digest mixtures.


Subject(s)
Collagen Type I/chemistry , Fourier Analysis , Mass Spectrometry/methods , Amino Acid Sequence , Animals , Cattle , Collagen Type I/metabolism , Cyclotrons , Mass Spectrometry/instrumentation , Proteolysis , Proteomics
2.
Article in English | MEDLINE | ID: mdl-23647107

ABSTRACT

This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW.


Subject(s)
Carboxylic Acids/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Mass Spectrometry , Polycyclic Aromatic Hydrocarbons/analysis
3.
Rapid Commun Mass Spectrom ; 25(13): 1899-909, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21638366

ABSTRACT

There is a growing need to develop analytical methods that can distinguish compounds found within industrially derived oil sands process water (OSPW) from those derived from natural weathering of oil sands deposits. This is a difficult challenge as possible leakage beyond tailings pond containments will probably be in the form of mixtures of water-soluble organics that may be similar to those leaching naturally into aquatic environments. We have evaluated the potential of negative ion electrospray ionization high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) for comparing oil sands polar organics from tailing ponds, interceptor wells, groundwater, river and lake surface waters. Principal component analysis was performed for all species observed. which included the O(2) class (often assumed to be monocarbxoylic naphthenic acids) along with a wide range of other species including humic substances in the river and lake samples: O(n) where n=1-16; NO(n) and N(2)O(n) where n=1-13; and O(n)S and O(n)S(2) where n=1-10 and 1-8, respectively. A broad range of species was investigated because classical naphthenic acids can be a small fraction of the 'organics' detected in the polar fraction of OSPW, river water and groundwater. Aquatic toxicity and environmental chemistry are attributed to the total organics (not only the classical naphthenic acids). The distributions of the oil sands polar organics, particularly the sulfur-containing species, O(n)S and O(n)S(2), may have potential for distinguishing sources of OSPW. The ratios of species containing O(n) along with nitrogen-containing species: NO(n), and N(2)O(n), were useful for differentiating organic components derived from OSPW from those found in river and lake waters. Further application of the FTICRMS technique for a diverse range of OSPW of varying ages and composition, as well as the surrounding groundwater wells, may be critical in assessing whether leakage from industrial sources to natural waters is occurring.

4.
Phys Chem Chem Phys ; 7(5): 975-80, 2005 Mar 07.
Article in English | MEDLINE | ID: mdl-19791388

ABSTRACT

We report the first results of a new instrument for the study of the reactions of naked metal cluster ions using techniques developed by Professor Bondybey to whom this issue is dedicated. Rh6+ ions have been produced using a laser vaporization source and injected into a 3 T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer where they are exposed to a low pressure (< 10(-8) mbar) of nitric oxide, NO. This system exhibits abundant chemistry, the first stages of which we interpret as involving the dissociative chemisorption of multiple NO molecules, followed by the liberation of molecular nitrogen. This yields key intermediates such as [Rh6O2]+ and [Rh6O4]+. The formation of the latter, after adsorption of four NO molecules, marks a change in the chemistry observed with further NO molecules adsorbed (presumably molecularly) without further N2 evolution until saturation is apparently reached with the [Rh6O4(NO)7]+ species. We analyse the data in terms of a simple 12-stage reaction mechanism, and we report the relative rate constants for each step. The trends in reactivity are assessed in terms of conceivable structures and the results are discussed where appropriate by comparison with extended surface studies of the same system. Particular attention is paid to the first step in the reaction (Rh6(+) + NO --> [Rh6NO]+) which exhibits distinctly bi-exponential kinetics, an observation we interpret as evidence for two different structural isomers of the Rh6+ cluster with one reacting more than an order of magnitude faster than the other.

SELECTION OF CITATIONS
SEARCH DETAIL
...