Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Genet Med ; 24(5): 986-998, 2022 05.
Article in English | MEDLINE | ID: mdl-35101336

ABSTRACT

PURPOSE: Several professional societies have published guidelines for the clinical interpretation of somatic variants, which specifically address diagnostic, prognostic, and therapeutic implications. Although these guidelines for the clinical interpretation of variants include data types that may be used to determine the oncogenicity of a variant (eg, population frequency, functional, and in silico data or somatic frequency), they do not provide a direct, systematic, and comprehensive set of standards and rules to classify the oncogenicity of a somatic variant. This insufficient guidance leads to inconsistent classification of rare somatic variants in cancer, generates variability in their clinical interpretation, and, importantly, affects patient care. Therefore, it is essential to address this unmet need. METHODS: Clinical Genome Resource (ClinGen) Somatic Cancer Clinical Domain Working Group and ClinGen Germline/Somatic Variant Subcommittee, the Cancer Genomics Consortium, and the Variant Interpretation for Cancer Consortium used a consensus approach to develop a standard operating procedure (SOP) for the classification of oncogenicity of somatic variants. RESULTS: This comprehensive SOP has been developed to improve consistency in somatic variant classification and has been validated on 94 somatic variants in 10 common cancer-related genes. CONCLUSION: The comprehensive SOP is now available for classification of oncogenicity of somatic variants.


Subject(s)
Genome, Human , Neoplasms , Genetic Testing/methods , Genetic Variation/genetics , Genome, Human/genetics , Genomics/methods , Humans , Neoplasms/genetics , Virulence
3.
Bioconjug Chem ; 21(8): 1537-44, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-20672836

ABSTRACT

We have synthesized a series of short, self-complementary oligonucleotide sequences modified at their 5'- and/or 3'- termini with a lipophilic dodecane (C12); these systems serve as models to assess the biophysical properties of double-stranded DNA (dsDNA) equipped with potentially stabilizing lipophilic substituents. Addition of C12 to the 5'-termini of self-complementary 10 nucleotide sequences increased their duplex melting temperatures (T(m)) by approximately 4-8 degrees C over their corresponding unmodified sequences. C12 functionalities added to both the 3'- and 5'-termini increased T(m) values by approximately 10-12 degrees C. The observed increases in T(m) correlated with greater duplex stabilities as determined by the free energy values (DeltaG) derived from T(m) plots. There is a greater degree of stabilization when C12 is positioned with a C.G base pair at the termini, and the stabilizing effect of lipophilic groups far exceeds the effect seen in adding an additional base pair to both ends of DNA. Stable, short dsDNA sequences are of potential interest in the development of transcription factor decoy oligonucleotides as possible therapeutic agents and/or biological tools. These results suggest that the stability of short dsDNA sequences are improved by lipophilic substituents and can be used as the basis for the design of dsDNAs with improved biological stabilities and function under physiological conditions.


Subject(s)
Alkanes/chemistry , Oligonucleotides/chemistry , DNA/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Structure , Oligonucleotides/chemical synthesis , Temperature , Thermodynamics
4.
Virology ; 400(2): 233-9, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20189212

ABSTRACT

The E7 protein of high-risk human papillomaviruses (HR HPVs) targets pRb family members (pRb, p107 and p130) for degradation; low-risk (LR) HPV E7 only targets p130 for degradation. The effect of HR HPV 16 E7 and LR HPV 6 E7 on p130 intracellular localization and half-life was examined. Nuclear/cytoplasmic fractionation and immunofluorescence showed that, in contrast to control and HPV 6 E7-expressing cells, a greater amount of p130 was present in the cytoplasm in the presence of HPV 16 E7. The half-life of p130, relative to control cells, was decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation extended the half-life of p130, regardless of intracellular localization. These results suggest that there may be divergent mechanisms by which LR and HR HPV E7 target p130 for degradation.


Subject(s)
Crk-Associated Substrate Protein/metabolism , Host-Pathogen Interactions , Human papillomavirus 16/pathogenicity , Human papillomavirus 6/pathogenicity , Papillomavirus E7 Proteins/metabolism , Cell Nucleus/chemistry , Cells, Cultured , Cytoplasm/chemistry , Half-Life , Humans , Keratinocytes/chemistry , Keratinocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...