Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hum Lact ; 13(3): 195-202, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9341411

ABSTRACT

There is a role for computer models in increasing the understanding of milk extraction from the human teat. A computer model can be used to investigate aspects of extracting milk from the human teat which are not feasible using clinical experiments. In this paper, the behavior of the human teat during an infant suckling and with the use of a breast pump is modeled. The model is used to (1) identify the role of suction and the peristaltic motion of the tongue during suckling and (2) compare the volume of milk extracted by an infant breastfeeding with that obtained using a breast pump. Infants use a peristaltic motion of the tongue, along with some suction, to extract milk. Breast pumps use a cyclic pattern of suction only. In the model, the human teat is represented as a cylindrical porous elastic material saturated with fluid. We mimic an infant suckling by imposing both suction and a peristaltic force in the computer model of the human teat. This is compared to the effect of suction only, which models the action of breast pumps. The results demonstrate that there is an optimal time to apply the peristaltic force during the suction cycle which will increase the milk volume. The model and results may be of use in the future design of effective breast pumps.


Subject(s)
Breast Feeding , Computer Simulation , Sucking Behavior/physiology , Suction/instrumentation , Equipment Design , Female , Humans , Infant , Rheology , Time Factors
2.
Bull Math Biol ; 59(5): 953-73, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9281906

ABSTRACT

We describe a mathematical model of the flow and deformation in a human teat. Our aim is to compare the theoretical milk yield during infant breast feeding with that obtained through the use of a breast pump. Infants use a peristaltic motion of the tongue, along with some suction, to extract milk, whereas breast pumps use a cyclic pattern of suction only. Our model is based on quasi-linear poroelasticity whereby the teat is modelled as a cylindrical porous elastic material saturated with fluid. We impose a cyclic axial suction pressure difference across the teat and impose a radial compressive force moving along the teat which mimics infant suckling. This is compared to the case of cyclic and steady pumping only which models the action of breast pumps. The results illustrate that there is an optimal time to apply the compressive force during the suction cycle that will increase the flow rate in our theoretical teat. The model and results may be of use in the future design of effective breast pumps.


Subject(s)
Breast Feeding , Milk, Human/metabolism , Models, Biological , Female , Humans , Lactation , Mathematics , Suction/methods
3.
Bull Math Biol ; 54(6): 977-97, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1515872

ABSTRACT

The behaviour of a cavity during an injection of fluid into biological tissue is considered. High cavity pressure drives fluid into the neighbouring tissue where it is absorbed by capillaries and lymphatics. The tissue is modelled as a nonlinear deformable porous medium with the injected fluid absorbed by the tissue at a rate proportional to the local pressure. A model with a spherical cavity in an infinite medium is used to find the pressure and displacement of the tissue as a function of time and radial distance. Analytical and numerical solutions for a step change in cavity pressure show that the flow induces a radial compression in the medium together with an annular expansion, the net result being an overall expansion of the medium. Thus any flow induced deformation of the material will aid in the absorption of fluid.


Subject(s)
Body Fluid Compartments/physiology , Models, Biological , Absorption , Animals , Humans , Injections , Mathematics , Pressure
4.
J Biomech ; 23(7): 647-54, 1990.
Article in English | MEDLINE | ID: mdl-2384480

ABSTRACT

The behaviour of a deformable porous medium during the flow of fluid under a pressure difference is examined for both infinitesimal and finite deformations. Models for both cases are solved for the problem of steady one-dimensional compression and compared with experimental data from Parker et al. (J. appl. Mech. 54, 794-800, 1987) for a polyurethane sponge. The purpose of this study is to identify a simple model which agrees qualitatively with these published results. To relate the stress relations for biological tissues to the data for polymer sponges (Parker et al., 1987) a translation of 1.1 kPa was introduced. This allows for some structural differences between the two media. It was found that the infinitesimal models were adequate up to 20% strain, but significant divergence occurred for higher strains. A finite deformation model with the permeability depending exponentially on the strain gave the most consistent results and required the fitting of only two parameters.


Subject(s)
Connective Tissue/physiology , Models, Biological , Permeability , Polyurethanes , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...