Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-484448

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune-escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-485596

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. SARS-CoV-2 infection induces neuroinflammation in the central nervous system (CNS), whereat the olfactory bulb seems to be involved most frequently. Here we show differences in the neuroinvasiveness and neurovirulence among SARS-CoV-2 variants in the hamster model five days post inoculation. Replication in the olfactory mucosa was observed in all hamsters, but most prominent in D614 inoculated hamsters. We observed neuroinvasion into the CNS via the olfactory nerve in D614G-, but not Delta (B.1.617.2)- or Omicron BA.1 (B.1.1.529) inoculated hamsters. Neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G but hardly in Delta or Omicron BA.1. Altogether, this indicates that there are differences in the neuroinvasive and neurovirulent potential among SARS-CoV-2 variants in the acute phase of the infection in the hamster model.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-481644

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 variants may impact vaccine efficacy significantly1. The Omicron variant termed BA.2, which differs genetically substantially from BA.1, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed2,3. Here, we used antigenic cartography to quantify and visualize antigenic differences between SARS-CoV-2 variants using hamster sera obtained after primary infection. Whereas early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape (vaccine-induced) antibody responses as a result of different antigenic characteristics. Close monitoring of the antigenic changes of SARS-CoV-2 using antigenic cartography can be helpful in the selection of future vaccine strains.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21252267

ABSTRACT

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-435771

ABSTRACT

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRRS2) to facilitate viral-host membrane fusion. ACE2 and TMPRRS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq level, however, biologically relevant protein receptor organization in whole tissues is still poorly understood. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRRS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals were stained using antibodies against ACE2 and TMPRRS2, combined with fluorescent spike protein and SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize expression patterns. The data demonstrates that infection is restricted to sites with both ACE2 and TMPRRS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the terminal bronchioles and alveoli. Conversely, infection completely overlaps at these sites where ACE2 and TMPRSS2 co-localize. O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=154 SRC="FIGDIR/small/435771v1_ufig1.gif" ALT="Figure 1"> View larger version (60K): org.highwire.dtl.DTLVardef@150fc65org.highwire.dtl.DTLVardef@1ea6a56org.highwire.dtl.DTLVardef@eb3c43org.highwire.dtl.DTLVardef@1c1877e_HPS_FORMAT_FIGEXP M_FIG C_FIG

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-435472

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-2 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell tropism, and associated immune responses of SARS-CoV-2 infection in different types of neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-2 infected a minority of individual mature neurons, without subsequent virus replication and spread, despite ACE2, TMPRSS2 and NPR1 expression in all cultures. However, this sparse infection did result in the production of type-III-interferons and IL-8. In contrast, H5N1 virus replicated and spread very efficiently in all cell types in all cultures. Taken together, our findings support the hypothesis that neurological complications might result from local immune responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the CNS.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-361154

ABSTRACT

Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. One-sentence summaryA dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo.

8.
Preprint in English | bioRxiv | ID: ppbiorxiv-282558

ABSTRACT

Receptor binding studies using recombinant SARS-CoV proteins have been hampered due to challenges in approaches creating spike protein or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric RBD proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric fully glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that fully glycosylated trimeric RBD proteins are attractive to analyze receptor binding and explore ACE2 expression profiles in tissues.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-264630

ABSTRACT

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.

10.
Preprint in English | bioRxiv | ID: ppbiorxiv-044503

ABSTRACT

SARS-CoV-2, a coronavirus that newly emerged in China in late 2019 1,2 and spread rapidly worldwide, caused the first witnessed pandemic sparked by a coronavirus. As the pandemic progresses, information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets. Intranasal inoculation of donor ferrets resulted in a productive upper respiratory tract infection and long-term shedding, up to 11 to 19 days post-inoculation. SARS-CoV-2 transmitted to four out of four direct contact ferrets between 1 and 3 days after exposure and via the air to three out of four independent indirect recipient ferrets between 3 and 7 days after exposure. The pattern of virus shedding in the direct contact and indirect recipient ferrets was similar to that of the inoculated ferrets and infectious virus was isolated from all positive animals, showing that ferrets were productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings 3.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-995639

ABSTRACT

A novel coronavirus, SARS-CoV-2, was recently identified in patients with an acute respiratory syndrome, COVID-19. To compare its pathogenesis with that of previously emerging coronaviruses, we inoculated cynomolgus macaques with SARS-CoV-2 or MERS-CoV and compared with historical SARS-CoV infections. In SARS-CoV-2-infected macaques, virus was excreted from nose and throat in absence of clinical signs, and detected in type I and II pneumocytes in foci of diffuse alveolar damage and mucous glands of the nasal cavity. In SARS-CoV-infection, lung lesions were typically more severe, while they were milder in MERS-CoV infection, where virus was detected mainly in type II pneumocytes. These data show that SARS-CoV-2 can cause a COVID-19-like disease, and suggest that the severity of SARS-CoV-2 infection is intermediate between that of SARS-CoV and MERS-CoV. One Sentence SummarySARS-CoV-2 infection in macaques results in COVID-19-like disease with prolonged virus excretion from nose and throat in absence of clinical signs.

SELECTION OF CITATIONS
SEARCH DETAIL
...