Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37111598

ABSTRACT

Antisense oligonucleotide (ASO) is a therapeutic modality that enables selective modulation of undruggable protein targets. However, dose- and sequence-dependent platelet count reductions have been reported in nonclinical studies and clinical trials. The adult Göttingen minipig is an acknowledged nonclinical model for ASO safety testing, and the juvenile Göttingen minipig has been recently proposed for the safety testing of pediatric medicines. This study assessed the effects of various ASO sequences and modifications on Göttingen minipig platelets using in vitro platelet activation and aggregometry assays. The underlying mechanism was investigated further to characterize this animal model for ASO safety testing. In addition, the protein abundance of glycoprotein VI (GPVI) and platelet factor 4 (PF4) was investigated in the adult and juvenile minipigs. Our data on direct platelet activation and aggregation by ASOs in adult minipigs are remarkably comparable to human data. Additionally, PS ASOs bind to platelet collagen receptor GPVI and directly activate minipig platelets in vitro, mirroring the findings in human blood samples. This further corroborates the use of the Göttingen minipig for ASO safety testing. Moreover, the differential abundance of GPVI and PF4 in minipigs provides insight into the influence of ontogeny in potential ASO-induced thrombocytopenia in pediatric patients.

2.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884510

ABSTRACT

The zebrafish (Danio rerio) embryo is gaining interest as a bridging tool between in-vitro and in-vivo developmental toxicity studies. However, cytochrome P450 (CYP)-mediated drug metabolism in this model is still under debate. Therefore, we investigated the potential of zebrafish embryos and larvae to bioactivate two known anti-epileptics, carbamazepine (CBZ) and phenytoin (PHE), to carbamazepine-10,11-epoxide (E-CBZ) and 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH), respectively. First, zebrafish were exposed to CBZ, PHE, E-CBZ and HPPH from 5»- to 120-h post fertilization (hpf) and morphologically evaluated. Second, the formations of E-CBZ and HPPH were assessed in culture medium and in whole-embryo extracts at different time points by targeted LC-MS. Finally, E-CBZ and HPPH formation was also assessed in adult zebrafish liver microsomes and compared with those of human, rat, and rabbit. The present study showed teratogenic effects for CBZ and PHE, but not for E-CBZ and HPPH. No HPPH was detected during organogenesis and E-CBZ was only formed at the end of organogenesis. E-CBZ and HPPH formation was also very low-to-negligible in adult zebrafish compared with the mammalian species. As such, other metabolic pathways than those of mammals are involved in the bioactivation of CBZ and PHE, or, these anti-epileptics are teratogens and do not require bioactivation in the zebrafish.


Subject(s)
Anticonvulsants/toxicity , Biotransformation , Embryo, Nonmammalian/pathology , Embryonic Development , Larva/growth & development , Microsomes, Liver/pathology , Organogenesis , Animals , Embryo, Nonmammalian/drug effects , Humans , Larva/drug effects , Microsomes, Liver/drug effects , Rabbits , Rats , Rats, Sprague-Dawley , Teratogens/toxicity , Zebrafish
3.
Pharmaceutics ; 13(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575518

ABSTRACT

The adult Göttingen Minipig is an acknowledged model for safety assessment of antisense oligonucleotide (ASO) drugs developed for adult indications. To assess whether the juvenile Göttingen Minipig is also a suitable nonclinical model for pediatric safety assessment of ASOs, we performed an 8-week repeat-dose toxicity study in different age groups of minipigs ranging from 1 to 50 days of age. The animals received a weekly dose of a phosphorothioated locked-nucleic-acid-based ASO that was assessed previously for toxicity in adult minipigs. The endpoints included toxicokinetic parameters, in-life monitoring, clinical pathology, and histopathology. Additionally, the ontogeny of key nucleases involved in ASO metabolism and pharmacologic activity was investigated using quantitative polymerase chain reaction and nuclease activity assays. Similar clinical chemistry and toxicity findings were observed; however, differences in plasma and tissue exposures as well as pharmacologic activity were seen in the juvenile minipigs when compared with the adult data. The ontogeny study revealed a differential nuclease expression and activity, which could affect the metabolic pathway and pharmacologic effect of ASOs in different tissues and age groups. These data indicate that the juvenile Göttingen Minipig is a promising nonclinical model for safety assessment of ASOs intended to treat disease in the human pediatric population.

4.
Metabolites ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34564451

ABSTRACT

Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.

5.
Front Toxicol ; 3: 804033, 2021.
Article in English | MEDLINE | ID: mdl-35295145

ABSTRACT

Dimethyl sulfoxide (DMSO) is a popular solvent for developmental toxicity testing of chemicals and pharmaceuticals in zebrafish embryos. In general, it is recommended to keep the final DMSO concentration as low as possible for zebrafish embryos, preferably not exceeding 100 µL/L (0.01%). However, higher concentrations of DMSO are often required to dissolve compounds in an aqueous medium. The aim of this study was to determine the highest concentration of DMSO that can be safely used in our standardized Zebrafish Embryo Developmental Toxicity Assay (ZEDTA). In the first part of this study, zebrafish embryos were exposed to different concentrations (0-2%) of DMSO. No increase in lethality or malformations was observed when using DMSO concentrations up to 1%. In a follow-up experiment, we assessed whether compounds that cause no developmental toxicity in the ZEDTA remain negative when dissolved in 1% DMSO, as false positive results due to physiological disturbances by DMSO should be avoided. To this end, zebrafish embryos were exposed to ascorbic acid and hydrochlorothiazide dissolved in 1% DMSO. Negative control groups were also included. No significant increase in malformations or lethality was observed in any of the groups. In conclusion, DMSO concentrations up to 1% can be safely used to dissolve compounds in the ZEDTA.

6.
MethodsX ; 7: 101087, 2020.
Article in English | MEDLINE | ID: mdl-33134094

ABSTRACT

Several pharmaceutical and chemical companies are using the zebrafish embryo as an alternative to animal testing for early detection of developmental toxicants. Unfortunately, the protocol of this zebrafish embryo assay varies between labs, resulting in discordant data for identical compounds. The assay also has some limitations, such as low biotransformation capacity and fewer morphological endpoints in comparison with the in vivo mammalian developmental toxicity studies. Consequently, there is a need to standardize and further optimize the assay for developmental toxicity testing. We developed a Zebrafish Embryo Developmental Toxicity Assay (ZEDTA) that can be extended with a metabolic activation system and/or skeletal staining to increase its sensitivity. As such, the ZEDTA can be used as a modular system depending on the compound of interest.•Our protocol is customized with a metabolic activation system for test compounds, using human liver microsomes. This system ensures exposure of zebrafish embryos to metabolites that are relevant for human risk and safety assessment. As human liver microsomes are toxic for the zebrafish embryo, we developed a preincubation system with an ultracentrifugation and subsequent dilution step.•Additionally, we developed a skeletal staining protocol that can be added to the ZEDTA modular system. Our live Alizarin Red staining method detects several bone structures in 5-day old zebrafish larvae in a consistent manner.

7.
Toxicol In Vitro ; 60: 203-211, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31154061

ABSTRACT

The development and normal function of prostate tissue depends on signalling interactions between stromal and epithelial compartments. Development of a prostate microtissue composed of these two components can help identify substance exposures that could cause adverse effects in humans as part of a non-animal risk assessment. In this study, prostate microtissues composed of human derived stromal (WPMY-1) and epithelial (RWPE-1) cell lines grown in scaffold-free hydrogels were developed and characterized using immunohistochemistry, light microscopy, and qRT-PCR. Within 5 days after seeding, the microtissues self-organized into spheroids consisting of a core of stromal WPMY-1 cells surrounded by epithelial RWPE-1 cells. The RWPE-1 layer is reflective of intermediate prostatic epithelium, expressing both characteristics of the luminal (high expression of PSA) and basal (high expression of cytokeratins 5/6 and 14) epithelial cells. The response of the microtissues to an androgen (dihydrotestosterone, DHT) and an anti-androgen (flutamide) was also investigated. Treatment with DHT, flutamide or a mixture of DHT and flutamide indicated that the morphology and self-organization of the microtissues is androgen dependent. qRT-PCR data showed that a saturating concentration of DHT increased the expression of genes coding for the estrogen receptors (ESR1 and ESR2) and decreased the expression of CYP1B1 without affecting the expression of the androgen receptor. With further development and optimization RWPE-1/WPMY-1 microtissues can play an important role in non-animal risk assessments.


Subject(s)
Animal Testing Alternatives , Prostate , Androgen Antagonists/pharmacology , Androgens/pharmacology , Cell Line , Coculture Techniques , Cytochrome P-450 CYP1B1/genetics , Dihydrotestosterone/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Flutamide/pharmacology , Gene Expression Regulation/drug effects , Humans , Hydrogels , Male , Receptors, Androgen/genetics
8.
Int J Mol Sci ; 19(12)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30544719

ABSTRACT

The zebrafish (Danio rerio) embryo is currently explored as an alternative for developmental toxicity testing. As maternal metabolism is lacking in this model, knowledge of the disposition of xenobiotics during zebrafish organogenesis is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this study was to assess cytochrome P450 (CYP) activity in zebrafish embryos and larvae until 14 d post-fertilization (dpf) by using a non-specific CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR) and a CYP1-specific substrate, i.e., 7-ethoxyresorufin (ER). Moreover, the constitutive mRNA expression of CYP1A, CYP1B1, CYP1C1, CYP1C2, CYP2K6, CYP3A65, CYP3C1, phase II enzymes uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and sulfotransferase 1st1 (SULT1ST1), and an ATP-binding cassette (ABC) drug transporter, i.e., abcb4, was assessed during zebrafish development until 32 dpf by means of quantitative PCR (qPCR). The present study showed that trancripts and/or the activity of these proteins involved in disposition of xenobiotics are generally low to undetectable before 72 h post-fertilization (hpf), which has to be taken into account in teratogenicity testing. Full capacity appears to be reached by the end of organogenesis (i.e., 120 hpf), although CYP1-except CYP1A-and SULT1ST1 were shown to be already mature in early embryonic development.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Pharmaceutical Preparations/metabolism , Zebrafish/embryology , Zebrafish/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biotransformation/genetics , Embryo, Nonmammalian/metabolism , Larva/genetics , Oxazines/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
9.
Gen Comp Endocrinol ; 266: 87-100, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29733815

ABSTRACT

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.


Subject(s)
Cyprinidae/embryology , Cyprinidae/genetics , Hypothalamo-Hypophyseal System/metabolism , Thyroid Gland/metabolism , Transcription, Genetic , Zebrafish/embryology , Zebrafish/genetics , Animals , Embryonic Development , Fish Proteins/metabolism , Larva/metabolism , Principal Component Analysis , Species Specificity
10.
Reprod Toxicol ; 72: 62-73, 2017 09.
Article in English | MEDLINE | ID: mdl-28663077

ABSTRACT

Mammalian liver microsomes are occasionally used as a metabolic activation system (MAS) to compensate for the low CYP-mediated bioactivation of drugs in zebrafish embryos, in the so-called mDarT. However, this MAS is embryotoxic and consequently zebrafish embryos are only exposed during a very limited developmental window. The main aim of this study was to try to reduce the embryotoxic properties of MAS in order to extend the exposure window in the mDarT. Removing the microsomes from the incubation medium prior to exposure of the zebrafish embryos did not reduce embryotoxicity. Free radicals (ROS) in the incubation medium were successfully reduced by antioxidants, but the medium remained embryotoxic. Single dosing of NADPH or omitting toxic components from the MAS preparation did also not reduce embryotoxicity. In conclusion, the exposure window in the mDarT could not be extended by reducing ROS levels, single dosing of NADPH or modifications of the MAS preparation.


Subject(s)
Antioxidants/pharmacology , Embryo, Nonmammalian , Teratogens/toxicity , Toxicity Tests/methods , Zebrafish , Activation, Metabolic , Animals , Anticonvulsants/toxicity , Embryonic Development/drug effects , Gallic Acid/pharmacology , NADP/toxicity , Reactive Oxygen Species/metabolism , Trimethadione/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...